Study on the Preparation and the Construction Technology of Anti-Static and Anti-Corrosion Self-Leveling Floor Coating

2010 ◽  
Vol 168-170 ◽  
pp. 981-984
Author(s):  
Yu Chang ◽  
Jian Feng Liang

Multifunctional epoxy self-leveling floor coating with excellent anti-static and anti-corrosion characteristics is prepared by modified epoxy resin and curing agent which have excellent chemical resistance characteristics. Conductive materials are adding into the formula. The coating structure and the matching construction technology are designed for the anti-static and anti-corrosion self-leveling floor coating application.

2013 ◽  
Vol 401-403 ◽  
pp. 713-716
Author(s):  
Cheng Fang ◽  
Dong Bo Guan ◽  
Wei Guo Yao ◽  
Shou Jun Wang ◽  
Hui An

The epoxy resin was modified with the mixture of α,ω-dihydroxy poly-(3,3,3-trifluoropropyl) siloxane (PTFPMS), KH560 and stannous octoate. KH560 can react with PTFPMS and also epoxy resin curing agent. The two reactions were characterized by FI-IR. The modified epoxy resin was characterized by FI-IR. The result showed that fluorine-containing silicone had been successfully introduced into the epoxy system. The mechanical and thermal properties of the modified epoxy resin were analyzed. The results showed that with the increase of PTFPMS the impact strength of epoxy resin increased, hardness and bending strength correspondingly reduced, slight decrease in the glass transition temperature.


2014 ◽  
Vol 1021 ◽  
pp. 3-6
Author(s):  
Hao Ran Zhou ◽  
Hong Xia Li ◽  
Wei Miao Yu

In order to solve the poor toughness, fatigue durability and shock resistance defects of the cured epoxy resin, in this paper, the epoxy resin was modified via dichlorodiphenyl silane as a modifier. Then the electronic packaging materials were prepared using the modified EP as matrix, a nitrile rubber (CTBN) as a toughening agent, methyl nadic anhydride (MNA) as a curing agent, and 2, 4, 6 - tris (dimethyl amino methyl) phenol as a curing accelerator. The effects of raw materials ratio on the cured products’ properties was investigated. FT-IR, TG-DTG and DMA were used to test and characterize the product. And we determined the best raw materials ratio and reaction conditions. Finally epoxy encapsulating materials which have excellent mechanical properties, electrical properties were prepared.


CORROSION ◽  
1960 ◽  
Vol 16 (1) ◽  
pp. 9-12

Abstract Briefly discusses physical properties and chemical resistance of basic epoxy systems. Also includes modified epoxy systems and laminated epoxy systems. Gives manufacture procedures for casting precision parts and lists some applications. 6.6.8


2010 ◽  
Vol 150-151 ◽  
pp. 988-991
Author(s):  
Xue Jun Zhang ◽  
Su Mei Kang ◽  
Zhan Qing Liu

A new kind of latent curing agent (LCA) for epoxy resin was synthesized by the reaction of Ethylenediamine with Butylacrylate in equal molar ratios, and the chemical structure and thermal property of the LCA were studied with FTIR and TGA, respectively. Moreover, LCA was also used to modify the epoxy sizing agent for high modulus carbon fiber. The results show that the wettability of sized carbon fiber tends to increase due to the increase of the polymer film on the surface of the carbon fiber, and interlaminar shear strength (ILSS) of the sized high modulus carbon fiber/epoxy composites is improved to 78MPa, which is increased by 8.6% compared with the composites reinforced by high modulus carbon fiber with unmodified sizing agent, indicating that using LCA modified epoxy resin as polymer coating for carbon fiber is a feasible method to improve the interfacial performance of high modulus carbon fiber/epoxy composites.


e-Polymers ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 433-439
Author(s):  
Shunsheng Su ◽  
Haiqing Wang ◽  
Chuanjian Zhou ◽  
Yanxiang Wang ◽  
Jianjun Liu

AbstractThis study aimed to improve the flexibility of E-51 epoxy resin by using polyamide/polyether amine as a two-component curing agent. Through solid state nuclear magnetic resonance (SSNMR), it was found that the cross-linking density of epoxy resin could be effectively reduced by adding the polyamide and polyether amine curing agent. The tensile tests showed that the elongation-at-break was remarkably improved. It was found by differential scanning calorimetry (DSC) that the curing behavior of the polyamide epoxy curing system varied with the addition of different polyether amine. Phase contrast microscope showed that phase separation occurred during the reaction of epoxy resin with the polyamide/polyether amine composite curing agent. In this paper, the modified epoxy resin was endowed with high elongation-at-break (>100%) and appropriate tensile strength (10~20 MPa).


2016 ◽  
Vol 37 (4) ◽  
pp. 1092-1098 ◽  
Author(s):  
Kai Hu ◽  
Lixia Bao ◽  
Xiaofeng Chen ◽  
Yao Xiao ◽  
Jingxin Lei

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2009 ◽  
Vol 114 (5) ◽  
pp. 2706-2710 ◽  
Author(s):  
Y. Yang ◽  
Gong Chen ◽  
K. M. Liew
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


Sign in / Sign up

Export Citation Format

Share Document