Comparative Study on 2A70 Aluminum Alloy High-Speed Milling Cutting Force Model

2011 ◽  
Vol 188 ◽  
pp. 254-257
Author(s):  
Xue Hui Wang ◽  
Ming Jun Feng ◽  
Can Zhao

The mechanical properties of flat end mill is analyzed the high-speed milling, the linear model for milling force is established. And the 2A70 aluminum alloy four-factor four-level orthogonal milling tests are carried out, the nonlinear model of milling is set up by using regression analysis method. The comparative analysis is made between the linear model and nonlinear model, whose results show that the two models have good agreement on the value and trend of change, which is the basis of the follow-up tool path optimization, fault diagnosis and so on.

2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


2019 ◽  
Vol 72 (5) ◽  
pp. 629-636
Author(s):  
Jian Zhang ◽  
Tingting Luo

Purpose The purpose of this paper is to study the variation of cavitation scale with pressure and flow in poppet throttle valve, to obtain the cavitation scale under pressure and flow conditions and to provide experimental support for the research of suppressing throttle valve cavitation and cavitation theory. Design/methodology/approach A hydraulic cavitation platform was set up, a valve was manufactured with highly transparent PMMA material and a high-speed camera was used to observe the change in cavitation scale. Findings Through experiments, it is found that the pressure difference between inlet and outlet of throttle valve affects the cavitation scale, and the more the pressure difference is, the easier the cavitation will be formed. Under the condition of small pressure difference, the cavitation is not obvious and reducing the pressure difference can effectively suppress the cavitation; the flow rate also affects the cavitation scale, the smaller the flow rate, the more difficult the cavitation will be formed and the lower the flow rate, the more the cavitation will be suppressed. Research limitations/implications Because of the magnification factor of the high-speed camera lens, the morphology of smaller bubbles cannot be observed in this study, and the experimental conditions need to be improved in the follow-up study. Originality/value This study can provide experimental support for the study of throttle valve cavitation suppression methods and cavitation theory.


2011 ◽  
Vol 188 ◽  
pp. 272-276
Author(s):  
Ai Qin Lin ◽  
Min Li Zheng ◽  
Yan Gu ◽  
C.G. Fan

High-speed cutting is a complexity and uncertainty process .The cutting parameters optimization is ambiguous. In this paper, based on the orthogonal experiment of high-speed milling aluminum alloy 7475, we use fuzzy comprehensive evaluation to optimize the parameters high-speed milling of aluminum alloy 7475 in the indication of surface roughness, cutting force, material removal rate. We have got cutting parameters optimal that is highly processing quality and productivity. Compared optimal results with orthogonal experimental results, we found that the optimal result is reliable. The study shows that fuzzy comprehensive evaluation method can optimize the parameters of high-speed milling of aluminum alloy 7475 accurately. This method has also a good application effect to other materials and great significance to guide actual production.


2010 ◽  
Vol 97-101 ◽  
pp. 1849-1852
Author(s):  
Tong Yue Wang ◽  
Ning He ◽  
Liang Li

Thin-walled structure is easy to vibrate in machining. The dynamic milling model of thin-walled workpiece is analyzed based on the analysis of degrees in two perpendicular directions of machine tool-workpiece system. In high speed milling of 2A12 aluminum alloy, the compensation method based on the modification of inertia effect is proposed and accurate cutting force coefficients are obtained. The machining system is divided into “spindle-cutter” and “workpiece-fixture” two sub-systems and the modal parameters of two sub-systems are acquired via modal analysis experiments. Finally, the stability lobes for high speed milling of 2A12 thin-walled workpiece are obtained by the use of these parameters. The results are verified against cutting tests.


Author(s):  
Zhiyang Yao ◽  
Ajay Joneja

High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration in HSM is to limit cutting force variations, and one way to do so is to reduce cutter-workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a function of the tool path requires repeated, expensive computations. This paper develops algorithms for a discretized computational model to make CWE computations for arbitrary shaped parts.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Junfeng Liu ◽  
Tao Lai ◽  
Xiaoan Chen

This paper presents an improved dynamic model for unbalanced high speed motorized spindles. The proposed model includes a Hertz contact force model which takes into the internal clearance and an unbalanced electromagnetic force model based on the energy of the air magnetic field. The nonlinear characteristic of the model is analysed by Lyapunov stability theory and numerical analysis to study the dynamic properties of the spindle system. Finally, a dynamic operating test is carried out on a DX100A-24000/20-type motorized spindle. The good agreement between the numerical solutions and the experimental data indicates that the proposed model is capable of accurately predicting the dynamic properties of motorized spindles. The influence of the unbalanced magnetic force on the system is studied, and the sensitivities of the system parameters to the critical speed of the system are obtained. These conclusions are useful for the dynamic design of high speed motorized spindles.


Sign in / Sign up

Export Citation Format

Share Document