Study on the Machinability Characteristics of Superalloy K424 during High Speed Turning

2011 ◽  
Vol 188 ◽  
pp. 636-641 ◽  
Author(s):  
M.H. Xiao ◽  
N. He ◽  
L. Li ◽  
B.G. Qiu ◽  
Y. Su

The present paper is an attempt of an experimental investigation on the machinability of superalloy, K424 during high speed turning using different ceramic inserts under different cutting speed and cooling/lubricating condition. The effect of machining parameters on the tool wear was examined through SEM micrographs.The experimental results show that, round Al2O3+SiCW KY4300R ceramic insert shows the best cutting performance in cutting the superalloy K424 , and it should be used in rather higher speed. Cold nitrogen gas is not recommended when machining nickel-based alloy with ceramic tools. SEM and EDS analysis shows that the ceramic tool was severely controlled by tool nose and depth-of-cut notch wear, followed by flaking and chipping.

2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Author(s):  
A.K. Parida ◽  
K.P. Maity

This paper presents a desirability function approach in order to find out an optimal combination of Machining parameters for multi-response parameters in hot turning operation of nickel based alloy. Taguchi’s L9 orthogonal array is used for experimental design. The machining parameters such as cutting velocity, feed rate, depth of cut and temperature are optimized by multi-response considerations namely power, flank wear, and MRR. ANOVA test was carried out and it was found that cutting speed is most influence parameter followed by feed rate, depth of cut and workpiece temperature. The optimization of machining parameters was found at 5.8 m/min of cutting speed, 30 °C preheating temperature, 0.2 mm depth of cut and 0.15 mm/rev feed rate


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2006 ◽  
Vol 505-507 ◽  
pp. 835-840 ◽  
Author(s):  
Shen Jenn Hwang ◽  
Yunn Lin Hwang ◽  
B.Y. Lee

This paper presents a new approach for the optimization of the high speed machining (HSM) process with multiple performance characteristics based on the orthogonal array with the grey relational analysis has been studied. Optimal machining parameters can then be determined by the grey relational grade as the performance index. In this study, the machining parameters such as cutting speed, feed rate and axial depth of cut are optimized under the multiple performance characteristics including, tool life, surface roughness, and material removal rate(MMR). As shown experimental results, machining performance in the HSM process can be improved effectively through this approach.


2015 ◽  
Vol 1115 ◽  
pp. 126-129
Author(s):  
Muataz Hazza F. Al Hazza ◽  
Mohamed Konneh ◽  
Mohammad Iqbal ◽  
Assem Hatem Taha ◽  
Muhammad H. Hasan

High speed turning (HST) is an advanced machining process that uses higher cutting speeds than those used in conventional machining. HST enables manufacturers to shorten machining times. Therefore, this approach should be followed and justified by economic study. One of the most effective tools for economic study is by developing a target-cost model to control the machining cost. The aim of this research is to develop a target costing model for high speed turning. To achieve the aim of this research, a set of experimental data was obtained in the following cutting levels: cutting speed (500-700 m/min), feed rate (1000-2000 mm/min), and depth of cut of (0.1-0.3) mm. The materials used in this research were AISI 304 stainless steel as a work piece material and coated carbide as a cutting tool. The output data was used to develop a target costing model. The desirability function has been used to optimize the model.


Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh

In the field of mechanical engineering, engineers are always looking for ways to improve the properties of materials. Cryogenic treatment of tooling steels is a proven technology to increase wear resistance and extend intervals between component replacements. The main idea of this paper is to apply Taguchi method to optimize cutting parameters in turning operation using cryogenic treated (CT) and untreated (UT) high speed steel (HSS) tools, so that the scope of cryogenic treatment on HSS tool material may be presented for the benefit of medium and small scale industry using HSS tools for cutting operation. Taguchi L25 orthogonal array is employed to study the performance characteristics in turning operations of AISI 1020 steel bars using CT and UT HSS tools. The microstructure has been found more refined and uniformly distributed after cryogenic treatment of HSS tool. It has been observed that optimum machining parameters in both the cases (CT HSS and UT HSS tools) are higher cutting speed (49.9 to 75.7 m/min.), lower feed rate (0.15 mm/rev.), medium depth of cut (0.40 mm). Analysis of variance (ANOVA) indicates that the cutting speed is most significant parameter followed by feed rate in case of CT HSS tool and depth of cut in case of UT HSS tool.


2013 ◽  
Vol 773-774 ◽  
pp. 653-660
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Juri Saedon ◽  
Mohd Amri Sulaiman

Inconel 718 is a material exhibiting characteristic that are able to maintain strength and integrity at elevated temperatures, but it is well known as a material with poor machinability. This paper presents a study of the performance in high speed machining of TiAlN/AlCrN nanomultilayer PVD coated Inconel 718 with minimum lubrication. Investigations have been made into the effects of cutting speed, feed rate and depth of cut (DOC) on the tool life. A toolmakers microscope and a scanning electron microscope (SEM) were used to examine the tool wear and chemical attrition, respectively, on the cutting tool during machining. In the machining of aged Inconel 718, the cutting tool experienced attrition, abrasion and notch wear throughout the experiment. Notch wear was found to be the dominant failure mode during milling; this wear appeared severe when localized flank wear reached the critical zone. The influence of radial depth despite the cutting speed, well known as having the most significant effect on tool life, is also discussed.


Author(s):  
Muataz Hazza ◽  
Nur Amirah Najwa

High speed turning (HST) is an approach that can be used to increase the material removal rate (MRR) by higher cutting speed. Increasing MRR will lead to shortening time to market. In contrast, increasing the cutting speed will lead to increasing the flank wear rate and then the tooling cost.  However, the main factor that will justify the best level of cutting speed is the tooling cost which merges all in one understandable measurable factor for manufacturer. The aim of this paper is to determine experimentally the optimum cutting levels that minimize the tooling cost in machining AISI 304 as a work piece machined by a coated carbide tool using one of the non-conventional methods: Genetic Algorithm (GA). The experiments were designed using Box Behnken Design (BBD) as part of Response Surface Methodology (RSM) with three input factors: cutting speed, feeding speed and depth of cut.


Sign in / Sign up

Export Citation Format

Share Document