Using the Desirability Function as an Effective Tool in Target Costing Model

2015 ◽  
Vol 1115 ◽  
pp. 126-129
Author(s):  
Muataz Hazza F. Al Hazza ◽  
Mohamed Konneh ◽  
Mohammad Iqbal ◽  
Assem Hatem Taha ◽  
Muhammad H. Hasan

High speed turning (HST) is an advanced machining process that uses higher cutting speeds than those used in conventional machining. HST enables manufacturers to shorten machining times. Therefore, this approach should be followed and justified by economic study. One of the most effective tools for economic study is by developing a target-cost model to control the machining cost. The aim of this research is to develop a target costing model for high speed turning. To achieve the aim of this research, a set of experimental data was obtained in the following cutting levels: cutting speed (500-700 m/min), feed rate (1000-2000 mm/min), and depth of cut of (0.1-0.3) mm. The materials used in this research were AISI 304 stainless steel as a work piece material and coated carbide as a cutting tool. The output data was used to develop a target costing model. The desirability function has been used to optimize the model.

Author(s):  
Muataz Hazza ◽  
Nur Amirah Najwa

High speed turning (HST) is an approach that can be used to increase the material removal rate (MRR) by higher cutting speed. Increasing MRR will lead to shortening time to market. In contrast, increasing the cutting speed will lead to increasing the flank wear rate and then the tooling cost.  However, the main factor that will justify the best level of cutting speed is the tooling cost which merges all in one understandable measurable factor for manufacturer. The aim of this paper is to determine experimentally the optimum cutting levels that minimize the tooling cost in machining AISI 304 as a work piece machined by a coated carbide tool using one of the non-conventional methods: Genetic Algorithm (GA). The experiments were designed using Box Behnken Design (BBD) as part of Response Surface Methodology (RSM) with three input factors: cutting speed, feeding speed and depth of cut.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Author(s):  
Nilrudra Mandal ◽  
B Doloi ◽  
Biswanath Mondal ◽  
BK Singh

An attempt has been made to apply the Taguchi parameter design method and multi-response optimization using desirability analysis for optimizing the cutting conditions (cutting speed, feed rate and depth of cut) on machining forces while finish turning of AISI 4340 steel using developed yttria based zirconia toughened alumina inserts. These zirconia toughened alumina inserts were prepared through wet chemical co-precipitation route followed by powder metallurgy process. The L9 (4) orthogonal array of the Taguchi experiment is selected for three major parameters, and based on the mean response and signal-to-noise ratio of measured machining forces, the optimal cutting condition arrived for feed force is A1, B1 and C3 (cutting speed: 150 m/min, depth of cut: 0.5 mm and feed rate: 0.28 mm/rev) and for thrust and cutting forces is A3, B1 and C1 (cutting speed: 350 m/min, depth of cut: 0.5 mm and feed rate: 0.18 mm/rev) considering the smaller-the-better approach. Multi-response optimization using desirability function has been applied to minimize each response, that is, machining forces, simultaneously by setting a goal of highest cutting speed and feed rate criteria. From this study, it can be concluded that the optimum parameters can be set at cutting speed of 350 m/min, depth of cut of 0.5 mm and feed rate of 0.25 mm/rev for minimizing the forces with 78% desirability level.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2011 ◽  
Vol 188 ◽  
pp. 636-641 ◽  
Author(s):  
M.H. Xiao ◽  
N. He ◽  
L. Li ◽  
B.G. Qiu ◽  
Y. Su

The present paper is an attempt of an experimental investigation on the machinability of superalloy, K424 during high speed turning using different ceramic inserts under different cutting speed and cooling/lubricating condition. The effect of machining parameters on the tool wear was examined through SEM micrographs.The experimental results show that, round Al2O3+SiCW KY4300R ceramic insert shows the best cutting performance in cutting the superalloy K424 , and it should be used in rather higher speed. Cold nitrogen gas is not recommended when machining nickel-based alloy with ceramic tools. SEM and EDS analysis shows that the ceramic tool was severely controlled by tool nose and depth-of-cut notch wear, followed by flaking and chipping.


Author(s):  
Kubilay Aslantas ◽  
Şükrü Ülker ◽  
Ömer Şahan ◽  
Danil Yu Pimenov ◽  
Khaled Giasin

AbstractMicroturning is a micromechanical machining process used to produce microcylindrical or axially symmetrical parts. Microcylindrical parts are mainly used in microfluidic systems, intravenous micromotors, microsurgical applications, optical lens applications, and microinjection systems. The workpiece diameter is very small in microturning and therefore is greatly affected by the cutting forces. For this reason, it is important to predict the cutting forces when machining miniature parts. In this study, an analytical mechanistic model of microturning is used to predict the cutting forces considering the tool nose radius. In the semi-empirically developed mechanistic model, the tool radius was considered. A series of semi-orthogonal microturning cutting tests were carried out to determine the cutting and edge force coefficients. The mechanistic model was generalized depending on the cutting speed and depth of cut by performing multilinear regression analysis. In the study, the depth of cut (ap = 30–90 µm) and feed values (f = 0.5–20 µm/rev) were selected considering the nose radius and edge radius of the cutting tool. The experiments were carried out under high-cutting speeds (Vc = 150–500 m/min) and microcutting conditions. Ti6Al4V alloy was used as the workpiece material and the tests were carried out under dry cutting conditions. Validation tests for different cutting parameters were carried out to validate the accuracy of the developed mechanistic model. The results showed that the difference between the mechanistic model and the experimental data was a minimum of 3% and a maximum of 24%. The maximum difference between the experimental and the model usually occurs in forces in the tangential direction. It has been observed that the developed model gives accurate results even at a depth of cut smaller than the nose radius and at feed values smaller than the edge radius.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li ◽  
Mozammel Mia

Cutting force in the machining process of SiCp/Al particle reinforced metal matrix composite is affected by several factors. Obtaining an effective mathematical model for the cutting force is challenging. In that respect, the second-order model of cutting force has been established by response surface methodology (RSM) in this study, with different cutting parameters, such as cutting speed, feed rate, and depth of cut. The optimized mathematical model has been developed to analyze the effect of actual processing conditions on the generation of cutting force for the turning process of SiCp/Al composite. The results show that the predicted parameters by the RSM are in close agreement with experimental results with minimal error percentage. Quantitative evaluation by using analysis of variance (ANOVA), main effects plot, interactive effect, residual analysis, and optimization of cutting forces using the desirability function was performed. It has been found that the higher depth of cut, followed by feed rate, increases the cutting force. Higher cutting speed shows a positive response by reducing the cutting force. The predicted and experimental results for the model of SiCp/Al components have been compared to the cutting force of SiCp/Al 45 wt%—the error has been found low showing a good agreement.


2015 ◽  
Vol 1115 ◽  
pp. 100-103
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Siti Aminatuzzuhriyah B. Haji Subir ◽  
Fawaz Mohsen Abdullah

Chatter is a type of intensive self-excited vibration commonly encountered in machining. It reduces productivity and precision, and is more noticeable in the machining of difficult-to-cut alloys like hardened steel. In such cases chatter causes excessive tool wear, especially flank wear, which in turn affects the stability of the cutting edge leading to premature tool failure, poor surface finish, and unsatisfactory machining performance. Nowadays, however, the demand is for fine finish, high accuracy, and low operation costs. Therefore, any technique which significantly reduces chatter is profitable for the industry. This paper demonstrates the viability and effectiveness of a novel chatter control strategy in the turning of (AISI 304) stainless steel by using permanent bar magnets. Reduction in chatter and corresponding tool flank wear are compared from results for both undamped and magnetically damped turning using coated carbide inserts. Special fixtures and keyway were made from mild steel in order to affix the magnets on the lathe’s carriage. The two ferrite magnets (1500 Gauss each) were placed below and beside the tool shank for damping from Z and X directions, respectively. Response surface methodology (RSM) was used to design the experimental runs in terms of the three primary cutting parameters: cutting speed, feed, and depth of cut. A Kistler 50g accelerometer measured the vibrations. The data was subsequently processed using DasyLab (version 6) software. The tool wear was measured using scanning electron microscope (SEM). Results indicate that this damping setup can reduce vibration amplitude by 47.36% and tool wear by 63.85%, on average. Thus, this technique is a simple and economical way of lowering vibration and tool wear in the turning of stainless steel.


2011 ◽  
Vol 264-265 ◽  
pp. 1193-1198
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


2015 ◽  
Vol 1115 ◽  
pp. 47-50 ◽  
Author(s):  
Muhammad Riza ◽  
Erry Yulian Triblas Adesta ◽  
M. Yuhan Suprianto

Cutting temperature generated during high speed machining operations has been recognized as major factors influence tool performance and workpiece geometry. This paper aims to model the cutting temperature and to investigate cutting temperature behaviours when contour-in tool path strategy applied in high speed end milling process. The experiments were carried out on CNC vertical machining center by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. Results obtained indicate that cutting temperature is high in the initial stage of milling and at the corners region or turning points region. Portion of radial width of cut with workpiece in combination with the abrupt change of the milling path direction occur particularly in acute internal corners of a pocket leads to rise of cutting temperature.


Sign in / Sign up

Export Citation Format

Share Document