Simulation of Drilling on the Copper of PCB with Ultra-High-Speed

2011 ◽  
Vol 188 ◽  
pp. 739-742 ◽  
Author(s):  
Hong Qun Tang ◽  
Jun Wen ◽  
Cheng Yong Wang ◽  
Lu Shu Wu ◽  
Yue Xian Song

This paper gives an introduction of the simulation of ultra-high-speed drilling on the copper of printed circuit board (PCB) by using finite element method (FEM). The cutting force, cutting torque and the distribution of cutting temperature are predicted. The value of cutting force is also be compared with the experimental value. The simulation results show that the experimental value of cutting force agrees well with the FEM value and the value of cutting torque is very small in the drilling process , in addition,the maximum temperature of copper comes up to 209 °C in center area and the temperature of copper chip evacuation from the spiral groove ranges from 135°C to 155 °C.

Circuit World ◽  
2017 ◽  
Vol 43 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Hongyan Shi ◽  
Xiaoke Lin ◽  
Yun Wang

Purpose The purposes of this paper are to study the characterization of drill bit breakage in printed circuit board (PCB) drilling process based on high-speed video analysis and to provide an important reference for micro drill bit breakage prediction. Design/methodology/approach Based on PCB drilling experiment, the high-speed camera was used to observe the micro drill breakage process and the chip removal process. The variation of chip in the drilling process was studied and one of the key reasons for the drill bit breakage was analysed. Finally, the swing angles’ feature during the breakage process of the micro drill was analysed and researched with the image processing tools of MATLAB. Findings The micro drill was prone to breakage mainly because of the blocked chips. The breakage process of the micro drill can be divided into the stage of stable chips evacuation, the stage of blocked chips and the stage of drill bit breakage. The radians of swing angles were basically in the range of ±0.01 when the drilling possess is normal. But when the radians of swing angles considerably exceeded the range of ±0.01, the micro drill bit may be fractured. Originality/value This paper presented the method to study the characterization of drill bit breakage in the PCB drilling process by using high-speed video analysis technology. Meanwhile, an effective suggestion about monitoring the radians of swing angles to predict the breakage of micro drill bit was also provided.


2010 ◽  
Vol 139-141 ◽  
pp. 768-771
Author(s):  
Zhen Chao Yang ◽  
Ding Hua Zhang ◽  
Xin Chun Huang ◽  
Chang Feng Yao ◽  
Jun Xue Ren

In order to provide theory basis for optimizing high-speed milling parameters, the high-speed milling process of titanium alloy Ti-6Al-4V was modeled using the commercial general purpose machining software package ADVANTEDGE. Effects of milling parameters like milling speed, feed per tooth, milling depth and milling width on cutting force and temperature were analyzed. The results show that cutting forces decrease with milling speed increasing, and increase with feed per tooth, milling depth and milling width, and the influences of feed per tooth, milling depth and milling width on cutting forces are significant. The maximum temperature in the cutting zone located on the rake face at a distance of about 0.02~0.03 mm from the tool tip. As milling speed and feed per tooth increase, the maximum temperature in the cutting area increases. The milling speed has significant impact on cutting temperature, but the milling depth has little impact.


2012 ◽  
Vol 723 ◽  
pp. 401-406 ◽  
Author(s):  
Xin Zhang ◽  
Cheng Yong Wang ◽  
Li Juan Zheng ◽  
Lin Fang Wang ◽  
Yue Xian Song

Cutting force is one of the most important parameters in the drilling process of FPC (Flexible printed circuit board). It has a directly affect on the micro-drills’ life and the micro-holes quality. It causes the FPC delamination, pulling of the plastic, the burr of exit hole and other processing defects. In this paper, some experimental investigations of cutting force of high speed micro-drilling are carried out to improve the drilling quality of FPC. The results indicate that the drilling parameters(spindle speed, feed speed and drill-bit diameter) have significant influence on micro-drilling thrust force. The thrust force of drill copper foil is larger than the thrust force of drill adhesiver layer and the thrust force of drill PI layer is the smallest. The larger the thrust force is, the bigger the exit burr is.


2011 ◽  
Vol 188 ◽  
pp. 104-109 ◽  
Author(s):  
Hong Qun Tang ◽  
Cheng Yong Wang ◽  
Bing Wang ◽  
F. Su ◽  
Ping Ma ◽  
...  

The target of this paper is to design a high speed drilling machine suitable for printed circuit board with micro-hole of 0.1 mm diameter, which has drilling force measuring function and rapid change spindle function. Therefore, in this paper, the main principles of module partition for drilling machine were analyzed. Module partition was conducted for high speed drilling machine of Printed Circuit Board (PCB), as well as using modular components combine PCB high speed drilling machine. Then, performance testing and simulation of dynamic modeling were carried out on the modular PCB high speed drilling machine. The results show that the modular PCB high speed drilling machine has good performance, enough stiffness, better stability and meeting the design requirements. The modular partition laid the foundation for further study on the module creation and reconfiguration of PCB drilling machine.


2013 ◽  
Vol 768-769 ◽  
pp. 128-135
Author(s):  
Joao P. Nobre ◽  
Ruben Guimarães ◽  
António Castanhola Batista ◽  
Maria José Marques ◽  
Luís Coelho ◽  
...  

A hybrid experimental-numerical methodology is applied to evaluate the unwanted stresses induced by hole-drilling in two 5000 and 7000 series aluminium alloys. The influence of the cutting speed of ultra-high speed drills powered by turbine systems by compressed air, which are commonly used in the hole-drilling equipments for residual stress measurements, is analyzed. The comparison of the effect of different drilling conditions on the drilled material using a quantitative approach is now possible. The applied methodology can play an important role on the improvement and optimization of the hole-drilling technique for residual stress measurements in particular and the drilling process in general.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
B W Huang

The dynamic characteristics of high-speed drilling were investigated in this study. To improve quality and produce a higher production rate, the dynamic characteristics of the drilling process need to be studied. A pre-twisted beam is used to simulate the drill. The moving Winkler-type elastic foundation is used to approximate the drilling process. A time-dependent vibration model for drilling is presented. The spinning speed, pre-twisted angle and thrust force effects of the drill are considered. The numerical analysis indicates that the natural frequency is suddenly reduced as the drill moves into a workpiece.


Sign in / Sign up

Export Citation Format

Share Document