Influence of Friction on the Vibratory Response of Structure

2011 ◽  
Vol 189-193 ◽  
pp. 152-159
Author(s):  
Xiao Mei Miao ◽  
Xiao Diao Huang

Friction is a phenomenon caused by relative motion, which can be used to absorb vibrational energy. The influence of friction on vibration responses of structures is complex due to the complicacy and nonlinear of the friction itself. In this paper, a 3-DOF spring-damper model with/without friction force was studied to expose how the friction governed the vibratory responses. Several popular friction models were reviewed and LuGre Model was used in this paper. The vibration properties under sine excitation and random were simulated by the Matlab Simulink Software. The results showed that friction absorbed vibration well and vibration damping was rapid. The characteristics of friction influence resulted from comprehensive functions of all factors, such as types of excitation, excitation amplitude and frequency and the location of friction.

2019 ◽  
Vol 10 (2) ◽  
pp. 517-528
Author(s):  
Xuan Bo Tran ◽  
Van Lai Nguyen ◽  
Khanh Duong Tran

Abstract. This study examines effects of three friction models: a steady-state friction model (SS model), the LuGre model (LG model), and the revised LuGre model (RLG model) on the motion simulation accuracy of a pneumatic cylinder. An experimental set-up of an electro-pneumatic servo system is built, and characteristics of the piston position, the pressures in the two-cylinder chambers and the friction force are measured and calculated under different control inputs to the proportional flow control valves. Mathematical model of the electro-pneumatic servo system is derived, and simulations are carried out under the same conditions as the experiments. Comparisons between measured characteristics and simulated ones show that the RLG model can give the best agreement among the three friction models while the LG model can only simulate partly the stick-slip motion of the piston at low velocities. The comparison results also show that the SS model used in this study is unable to simulate the stick-slip motion as well as creates much oscillations in the friction force characteristics at low velocities.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Abdallah Hadji ◽  
Njuki Mureithi

A hybrid friction model was recently developed by Azizian and Mureithi (2013) to simulate the friction behavior of tube-support interaction. However, identification and validation of the model parameters remains unresolved. In previous work, the friction model parameters were identified using the reverse harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact, and local displacement at the contact point. In the present work, the numerical simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. This beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. The two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closest to experiments. The results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. The present work is an intermediate step toward identification of the hybrid friction model parameters and, longer-term, improved analysis of tube-support dynamic behavior under the influence of friction.


Author(s):  
Dein Shaw ◽  
H. C. Lin

In this study, the tension force distributions in the film of COF cartridge are studied. It is noted that if the tension force on the film is too high, the interface between chip and film cracked. If the force is too low, there is no enough friction force to keep the COF in fix position when the cartridge is on the transportation vehicle. The relative motion between the chips of lower layer and the film of upper layer will cause the fatigue of interface of chips and film. It is also important to note that due to the friction the tension force at any section of the film is different. To fine the force distribution, a method to determine the tension force is developed and only effect of axial direction is considered. The assumption makes the film behave like a string. The results show that the forces on the film are different whenever the film passes a chip underneath.


1993 ◽  
Vol 115 (3) ◽  
pp. 575-577 ◽  
Author(s):  
Lee E. Schroeder ◽  
Rajendra Singh

This paper describes an experimental method of determining sliding friction forces in a pneumatic actuator. Several empirical and semi-empirical friction models are evaluated using measured friction force data. A repeatability study is also performed to qualitatively assess friction randomness and a change in friction regimes.


2012 ◽  
Vol 2012 (0) ◽  
pp. _J164012-1-_J164012-2
Author(s):  
Kenji Fukuzawa ◽  
Hiroaki Tsuji ◽  
Satoshi Hamaoka ◽  
Mitsuhiro Shikida ◽  
Shintaro Itoh ◽  
...  

Author(s):  
Hesam Babahosseini ◽  
Seyed Hanif Mahboobi ◽  
Ali Meghdari

Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in tip/particle/substrate system are considered. These effects are utilized to derive governing dynamics of the lumped model of AFM and nanoparticle during the manipulation process. The utilized friction models are a modified Coulomb approach and Lund-Grenoble (LuGre) model. The former is a combination of both normal force and contact surface area. The latter is dependent on the velocity of the nanoparticle and leads to stick-slip behavior of the nanoparticle. Finally, the compatibility and effectiveness of the two proposed models are simulated and compared.


Author(s):  
Paolo Righettini ◽  
Roberto Strada ◽  
Shirin Valilou ◽  
Ehsan Khademolama

An effective way for the testing of a large number of systems is using single and multi-axis shaking tables. Among the possible applications, the civil engineering field stands out for the testing of structures, or part of them, both on a reduced and on a full scale. However, design a high performance controller for a servo-hydraulic shaking table is a difficult problem due to its non-linarites and large friction forces. The goal of this paper is to develop and experimentally validate a robust numerical model that simulates the acceleration behavior of a uni-axial servo-hydraulic shaking table system with considering three friction models, the LuGre model, the modified LuGre model and the new modified LuGre model. First, a full system model of servo-hydraulic system is developed based on fluid mechanical expressions and then the friction force of hydraulic cylinder is modeled and validated on the real shaking table. Data of the experiment are gathered from input command valve, and the output acceleration and position of the table. All models are simulated by using MATLAB and SIMULINK computer program. The parameters of the system and the friction models are estimated by using least square method (LSM). Finally, the comparisons of simulated results with experimental ones show that the model of the system with considering third model of the friction can predict accurately the shaking table’s behaviors.


Author(s):  
Juan C. Jauregui ◽  
Jorge A. Saenz ◽  
Claudia A. Gonzalez

Rubbing, in turbomachinery, is a phenomenon difficult to identify and predict. Rubbing is a sudden event that can cause catastrophic damage, therefore, it is necessary to have good prediction models. In order to predict this phenomenon, several models have been proposed which are based on representing rubbing as an external friction force acting on the rotor. The work presented here includes the results of two experiments. In the first one, the accelerations of a rotor rubbing a fixed spot were recorded. In the second experiment, the accelerations and the friction force were measured. All the data were analyzed using the Continuous Wavelet Transform and the data from the second experiment were used for estimating the friction force. It was found that modelling the stiffness of the system as a Fourier Series gives better results than other models.


Author(s):  
Abdallah Hadji ◽  
Njuki Mureithi

A hybrid friction model was recently developed by Azizian and Mureithi [1] to simulate the friction behavior of tube-support interaction. However, identification of the model parameters remains unresolved. In previous work, the friction model parameters were identified using reverse the harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact and local displacement at the contact point. In the present work, the simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. This beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. The two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closer to experiments. The results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. The present work is an intermediate step toward identification of the hybrid friction model parameters and, longer term, improved analysis of tube-support dynamic behavior under the influence of friction.


Author(s):  
R. G. Tyler

Tests were carried out on a brake lining damper intended to dissipate energy between parts of a structure having relative motion during earthquake attack. The device operates by the sliding of a steel plate clamped against a brake lining. Hysteresis loops for the damper showed peaks for the breakaway friction force, when the value of the force was up to twice that obtained for continuous movement. Also values of the coefficient of friction derived from the test were lower than those quoted elsewhere. Further testing is required prior to the use of the method in structures.


Sign in / Sign up

Export Citation Format

Share Document