Effect of Thickness and Length of Ion Polymer Metal Composites (IPMC) on its Actuation Properties

2011 ◽  
Vol 197-198 ◽  
pp. 401-404
Author(s):  
Shu Feng Li

IPMC (ionic polymer metal composite), a kind of ionic electroactive polymer (EAP) has wide applications in the filed of bionics and artificial apparatus for its fast and large bending deformation under the low driving voltages. In this paper, thick IPMCs with various numbers of films were first fabricated by the hot-pressing method. Then the effect of the thickness on its properties, such as the tip forces and water uptake capability, were investigated. The effect of length of the IPMC on its tip forces was further studied. SEM (scanning electron microscopy) micrographs of IPMC specimen were also examined.

Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2012 ◽  
Vol 11 (1) ◽  
pp. 249-270 ◽  
Author(s):  
David Pugal ◽  
Pavel Solin ◽  
Kwang J. Kim ◽  
Alvo Aabloo

AbstractWe are concerned with a model of ionic polymer-metal composite (IPMC) materials that consists of a coupled system of the Poisson and Nernst-Planck equations, discretized by means of the finite element method (FEM). We show that due to the transient character of the problem it is efficient to use adaptive algorithms that are capable of changing the mesh dynamically in time. We also show that due to large qualitative and quantitative differences between the two solution components, it is efficient to approximate them on different meshes using a novel adaptive multimeshhp-FEM. The study is accompanied with numerous computations and comparisons of the adaptive multimeshhp-FEM with several other adaptive FEM algorithms.


Author(s):  
Jake A. Steiner ◽  
Omar A. Hussain ◽  
Lan N. Pham ◽  
Jake J. Abbott ◽  
Kam K. Leang

Abstract This paper introduces a magneto-electroactive endoluminal soft (MEESo) robot concept, which could enable new classes of catheters, tethered capsule endoscopes, and other mesoscale soft robots designed to navigate the natural lumens of the human body for a variety of medical applications. The MEESo locomotion mechanism combines magnetic propulsion with body deformation created by an ionic polymer-metal composite (IPMC) electroactive polymer. A detailed explanation of the MEESo concept is provided, including experimentally validated models and simulated magneto-electroactive actuation results demonstrating the locomotive benefits of incorporating an IPMC compared to magnetic actuation alone.


Author(s):  
James D. Carrico ◽  
Nicklaus W. Traeden ◽  
Matteo Aureli ◽  
Kam K. Leang

This paper describes a new three-dimensional (3D) additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. The proposed manufacturing process is well-suited for creating electroactive soft complex structures and devices, whereby the entire system can be manufactured from an electroactive polymer material. For the first time, the unique actuation and sensing properties of ionic polymer-metal composite (IPMC) is exploited and directly incorporated into the structural design to create sub-millimeter scale cilia-like actuators and sensors to macro-scale soft robotic systems. Because ionic polymers such as Nafion are not melt-processable, in the first step a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since, at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor resin in an aqueous solution of sodium hydroxide (NaOH) and dimethyl sulfoxide (DMSO, C2H6OS). Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables selected areas of the 3D-printed electroactive structures to be controlled by voltage signals for actuation, while other parts can function as sensors. This innovative AM process is described in detail and experimental results are presented to demonstrate the potential and feasibility of creating 3D-printed IPMC actuator samples.


2018 ◽  
Vol 29 (14) ◽  
pp. 2863-2873 ◽  
Author(s):  
Jakub Bernat ◽  
Jakub Kolota

Ionic polymer–metal composites are classified as a smart materials group, whose properties can be designed depending on the needs that arise. Ionic polymer–metal composites belong to the class of wet electroactive polymers. They are promising candidates actuator for various potential applications mainly due to their flexible, low voltage requirements, compact design, and lack of moving parts. However, being a widely used material in industry, ionic polymer–metal composite requires complex control methods due to its strongly nonlinear nature. An important prerequisite for an intelligent controller is the ability to adapt rapidly to any unknown operating environment. This article presents a novel approach to tuning multiple models of an online identifier by integral mapping. Through the extension of the estimation law of additional mapping between parameters and measurable signals, we significantly improve transient responses without increasing feedback gain. The authors measured the moisture content of ionic polymer–metal composite and consider in the experiment relationship between drying and varying of curvature output. The effectiveness of the proposed multiple models adaptive control strategy was verified in various experiments. The results of the study illustrated in the experiments show that adding new mapping improves not only the transients of controlled plant, but also increases the performance indexes of adaptive system.


2018 ◽  
Vol 29 (15) ◽  
pp. 3124-3135 ◽  
Author(s):  
Mohsen Annabestani ◽  
Nadia Naghavi ◽  
Mohammad Maymandi-Nejad

Ionic polymer–metal composites are an emerging kind of electroactive polymer actuators, which can bend in response to a relatively low driving voltage. However, to enhance the actuation performance of ionic polymer–metal composites, some of their drawbacks should be considered. One of the most important drawbacks is “back relaxation.” The so-called back relaxation effect means, when a step input voltage is applied to the ionic polymer–metal composite, the conventional bending displacement toward the anode is followed by an unwanted and slow back relaxation toward the cathode. Control-based methods for restraining the ionic polymer–metal composite back relaxation effect are feedback-based schemes which apply significant constraints to dominant applications of ionic polymer–metal composite actuators especially in biomedical applications. In this article, we present an entirely scientific-based mathematical modeling to achieve a practical method for restraining the back relaxation effect in Nafion-based ionic polymer–metal composites, relying on creating a specific pattern on Pt layers of the ionic polymer–metal composites and applying a local Gaussian disturbance to this patterned ionic polymer–metal composites.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 741 ◽  
Author(s):  
Liangsong Huang ◽  
Yu Hu ◽  
Yun Zhao ◽  
Yuxia Li

Ionic polymer-metal composites are electrically driven intelligent composites that are readily exposed to bending deformations in the presence of external electric fields. Owing to their advantages, ionicpolymer-metal composites are promising candidates for actuators. However, ionicpolymer-metal composites exhibit strong nonlinear properties, especially hysteresis characteristics, resulting in severely reduced control accuracy. This study proposes an ionic polymer-metal composite platform and investigates its modeling and control. First, the hysteresis characteristics of the proposed Pt-electrode ionic polymer-metal composite are tested. Based on the hysteresis characteristics, ionic polymer-metal composites are modeled using the Prandtl-Ishlinskii model and the least squares support vector machine-nonlinear autoregressive model, respectively. Then, the ionic polymer-metal composite is driven by a random sinusoidal voltage, and the LSSVM-NARX model is established on the basis of the displacement data obtained. In addition, an artificial bee colony algorithm is proposed for accuracy optimization of the model parameters. Finally, an inverse controller based on the least squares support vector machine-nonlinear autoregressive model is proposed to compensate the hysteresis characteristics of the ionic polymer-metal composite. A hybrid PID feedback controller is developed by combining the inverse controller with PID feedback control, followed by simulation and testing of its actual position control on the ionic polymer-metal composite platform. The results show that the hybrid PID feedback control system can effectively eliminate the effects of the hysteresis characteristics on ionic polymer-metal composite control.


2011 ◽  
Vol 17 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Mohammad Luqman ◽  
Jang-Woo Lee ◽  
Kwang-Kil Moon ◽  
Young-Tai Yoo

Sign in / Sign up

Export Citation Format

Share Document