Research on PCB Electroplating Current Monitoring System Based on a Wireless Sensor Network

2011 ◽  
Vol 201-203 ◽  
pp. 1573-1576
Author(s):  
Xiu Feng Li ◽  
Hong Xiong Xian

A system by using computer techniques, wireless communication and sensors is designed for monitoring electroplating current of PCB. This monitoring system uses wireless sensor nodes based on NEF9E5 MCU as the center unit, and uses a Hall current-sensor and its peripheral circuit. The system implements the wireless communication between wireless sensor nodes and the computer by using the method of time partitioned multiple addresses. The tested results show that the system is practicable, reliable and low-cost,and could be widely applied and developed in the future.

The objective of this work is a dynamic monitoring of agricultural cultivation using WSN technology. The Wireless Sensor nodes are designed in controlling and supervising the factors of variegated of such as level of water, humidity, and temperature. ZigBee mechanism is used as a medium of transmission in WSN (Wireless Sensor Network) devices using sensors, routers which propagate the data to longer distance over a network, with the help of coordinator sensor and will transmit the data to the cloud computer, which in turn will illustrate the control and data in the monitoring system. The node sensor will extract the factors of agriculture from various sources on realtime and will transmit the data using IoT (Internet of Things), which is integrated with one another on various platforms for performing various types of actions and will reduce the need of labor. Apart from monitoring, enhancement of details can be proposed based on WSN for the deployment of various nodes and by applying digital acquisition strategies for acquisition of data and performing various types of data analysis on cloud using the collected information of agriculture


Advanced Technologies such as Internet of Things, Machine Networking give rise to the deployment of autonomous Wireless Sensor Nodes. They are used for various domains namely battlefield monitoring, enemy detection and monitoring the environment change. These Wireless Sensor Nodes have the properties of low cost and high battery life. NL (Network Lifetime) is an important phase of Wireless Sensor Network (WSNs), in which the nodes can maintain sensing for a more amount of time. NL can be improved by use of multiple techniques namely Opportunistic Transmission, Scheduling of Timed Data Packets, Clustering of Nodes, Energy Harvesting and Connectivity. This paper provides the energy consumption computation, life time ratio definition and the overview of NL improvement techniques. The paper also presents brief review of the Destination based and Source based routing algorithm


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


Author(s):  
Ronghua Yu ◽  
Qixin Zhou ◽  
Yechun Wang ◽  
Chao You

Researchers have been focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. EIS is a technique used for evaluating coating permeability or barrier performance based on the electrical impedance of coating. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, there are three coating panels immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that the proposed wireless sensor network is capable to evaluate the coating degrading.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Author(s):  
N. N. N. Abd. Malik ◽  
M. Esa ◽  
S. K. S. Yusof ◽  
S. A. Hamzah ◽  
M. K. H. Ismail

This chapter presents an intelligent method of optimising the radiation beam of wireless sensor nodes in Wireless Sensor Network (WSN). Each node has the feature of a monopole antenna. The optimisation involves selection of nodes to be organised as close as possible to a uniform linear array (ULA) in order to minimise the position errors, which will improve the radiation beam reconfiguring performance. Instead of utilising random beamforming, which needs a large number of sensor nodes to interact with each other and form a narrow radiation beam, the developed optimisation algorithm is emphasized to only a selected number of sensor nodes which can construct a linear array. Thus, the method utilises radiation beam reconfiguration technique to intelligently establish a communication link in a WSN.


2020 ◽  
pp. 857-880
Author(s):  
Madhuri Rao ◽  
Narendra Kumar Kamila

Wireless Sensor nodes are being employed in various applications like in traffic control, battlefield, and habitat monitoring, emergency rescue, aerospace systems, healthcare systems and in intruder tracking recently. Tracking techniques differ in almost every application of Wireless Sensor Network (WSN), as WSN is itself application specific. The chapter aims to present the current state of art of the tracking techniques. It throws light on how mathematically target tracking is perceived and then explains tracking schemes and routing techniques based on tracking techniques. An insight of how to code localization techniques in matlab simulation tool is provided and analyzed. It further draws the attention of the readers to types of tracking scenarios. Some of the well established tracking techniques are also surveyed for the reader's benefit. The chapter presents with open research challenges that need to be addressed along with target tracking in wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document