A Clustering Method for Pruning Fully Connected Neural Network

2011 ◽  
Vol 204-210 ◽  
pp. 600-603
Author(s):  
Gang Li ◽  
Xing San Qian ◽  
Chun Ming Ye ◽  
Lin Zhao

This paper focuses mainly on a clustering method for pruning Fully Connected Backpropagation Neural Network (FCBP). The initial neural network is fully connected, after training with sample data, a clustering method is employed to cluster weights between input to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP (Partially Connected Backpropagation) Neural Network. PCBP can be used in prediction or data mining more efficiently than FCBP. At the end of this paper, An experiment is conducted to illustrate the effects of PCBP using the submersible pump repair data set.

Author(s):  
Chang Guo ◽  
Ming Gao ◽  
Peixin Dong ◽  
Yuetao Shi ◽  
Fengzhong Sun

As one kind of serious environmental problems, flow-induced noise in centrifugal pumps pollutes the working circumstance and deteriorates the performance of pumps, meanwhile, it always changes drastically under various working conditions. Consequently, it is extremely significant to predict flow-induced noise of centrifugal pumps under various working conditions with a practical mathematical model. In this paper, a three-layer back propagation (BP) neural network model is established and the number of input, hidden and output layer node is set as 3, 6 and 1, respectively. To be specific, the flow rate, rotational speed and medium temperature are chosen as input layer, and the corresponding flow-induced noise evaluated by average of total sound pressure level (A_TSPL) as output layer. Furthermore, the tansig function is used to act as transfer function between the input layer and hidden layer, and the purelin function is used between hidden layer and output layer. The trainlm function based on Levenberg-Marquardt algorithm is selected as the training function. By using a large number of sample data, the training of the network model and prediction research are accomplished. The results indicate that good correlation is established among the sample data, and the predictive values show great consistence with simulation ones, of which the average relative error of A_TSPL in process of verification is 0.52%. The precision of the model can satisfy the requirement of relevant research and engineering application.


2021 ◽  
Vol 35 (3) ◽  
pp. 209-215
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Data mining techniques are included with Ensemble learning and deep learning for the classification. The methods used for classification are, Single C5.0 Tree (C5.0), Classification and Regression Tree (CART), kernel-based Support Vector Machine (SVM) with linear kernel, ensemble (CART, SVM, C5.0), Neural Network-based Fit single-hidden-layer neural network (NN), Neural Networks with Principal Component Analysis (PCA-NN), deep learning-based H2OBinomialModel-Deeplearning (HBM-DNN) and Enhanced H2OBinomialModel-Deeplearning (EHBM-DNN). In this study, experiments were conducted on pre-processed datasets using R programming and 10-fold cross-validation technique. The findings show that the ensemble model (CART, SVM and C5.0) and EHBM-DNN are more accurate for classification, compared with other methods.


2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Hijratul Aini ◽  
Haviluddin Haviluddin

Crude palm oil (CPO) production at PT. Perkebunan Nusantara (PTPN) XIII from January 2015 to January 2018 have been treated. This paper aims to predict CPO production using intelligent algorithms called Backpropagation Neural Network (BPNN). The accuracy of prediction algorithms have been measured by mean square error (MSE). The experiment showed that the best hidden layer architecture (HLA) is 5-10-11-12-13-1 with learning function (LF) of trainlm, activation function (AF) of logsig and purelin, and learning rate (LR) of 0.5. This architecture has a good accuracy with MSE of 0.0643. The results showed that this model can predict CPO production in 2019.


2020 ◽  
Vol 10 (11) ◽  
pp. 4010 ◽  
Author(s):  
Kwang-il Kim ◽  
Keon Myung Lee

Marine resources are valuable assets to be protected from illegal, unreported, and unregulated (IUU) fishing and overfishing. IUU and overfishing detections require the identification of fishing gears for the fishing ships in operation. This paper is concerned with automatically identifying fishing gears from AIS (automatic identification system)-based trajectory data of fishing ships. It proposes a deep learning-based fishing gear-type identification method in which the six fishing gear type groups are identified from AIS-based ship movement data and environmental data. The proposed method conducts preprocessing to handle different lengths of messaging intervals, missing messages, and contaminated messages for the trajectory data. For capturing complicated dynamic patterns in trajectories of fishing gear types, a sliding window-based data slicing method is used to generate the training data set. The proposed method uses a CNN (convolutional neural network)-based deep neural network model which consists of the feature extraction module and the prediction module. The feature extraction module contains two CNN submodules followed by a fully connected network. The prediction module is a fully connected network which suggests a putative fishing gear type for the features extracted by the feature extraction module from input trajectory data. The proposed CNN-based model has been trained and tested with a real trajectory data set of 1380 fishing ships collected over a year. A new performance index, DPI (total performance of the day-wise performance index) is proposed to compare the performance of gear type identification techniques. To compare the performance of the proposed model, SVM (support vector machine)-based models have been also developed. In the experiments, the trained CNN-based model showed 0.963 DPI, while the SVM models showed 0.814 DPI on average for the 24-h window. The high value of the DPI index indicates that the trained model is good at identifying the types of fishing gears.


2019 ◽  
Vol 8 (3) ◽  
pp. 4373-4378

The amount of data belonging to different domains are being stored rapidly in various repositories across the globe. Extracting useful information from the huge volumes of data is always difficult due to the dynamic nature of data being stored. Data Mining is a knowledge discovery process used to extract the hidden information from the data stored in various repositories, termed as warehouses in the form of patterns. One of the popular tasks of data mining is Classification, which deals with the process of distinguishing every instance of a data set into one of the predefined class labels. Banking system is one of the realworld domains, which collects huge number of client data on a daily basis. In this work, we have collected two variants of the bank marketing data set pertaining to a Portuguese financial institution consisting of 41188 and 45211 instances and performed classification on them using two data reduction techniques. Attribute subset selection has been performed on the first data set and the training data with the selected features are used in classification. Principal Component Analysis has been performed on the second data set and the training data with the extracted features are used in classification. A deep neural network classification algorithm based on Backpropagation has been developed to perform classification on both the data sets. Finally, comparisons are made on the performance of each deep neural network classifier with the four standard classifiers, namely Decision trees, Naïve Bayes, Support vector machines, and k-nearest neighbors. It has been found that the deep neural network classifier outperforms the existing classifiers in terms of accuracy


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhaojie Wang ◽  
Qingzhe Lv ◽  
Zhaobo Lu ◽  
Yilei Wang ◽  
Shengjie Yue

Incentive mechanism is the key to the success of the Bitcoin system as a permissionless blockchain. It encourages participants to contribute their computing resources to ensure the correctness and consistency of user transaction records. Selfish mining attacks, however, prove that Bitcoin’s incentive mechanism is not incentive-compatible, which is contrary to traditional views. Selfish mining attacks may cause the loss of mining power, especially those of honest participants, which brings great security challenges to the Bitcoin system. Although there are a series of studies against selfish mining behaviors, these works have certain limitations: either the existing protocol needs to be modified or the detection effect for attacks is not satisfactory. We propose the ForkDec, a high-accuracy system for selfish mining detection based on the fully connected neural network, for the purpose of effectively deterring selfish attackers. The neural network contains a total of 100 neurons (10 hidden layers and 10 neurons per layer), learned on a training set containing about 200,000 fork samples. The data set, used to train the model, is generated by a Bitcoin mining simulator that we preconstructed. We also applied ForkDec to the test set to evaluate the attack detection and achieved a detection accuracy of 99.03%. The evaluation experiment demonstrates that ForkDec has certain application value and excellent research prospects.


Author(s):  
Sri Hartati ◽  
Sri Nurdiati

Abstract— In recent years, the occurrence of protein shortage of children under 5 years old in many poor area has dramatically increased. Since this situation can cause serious problem to children like a delay in their growth, delay in their development and also disfigurement, disability, dependency, the early diagnose of protein shortage is vital. Many applications have been developed in performing disease detection such as an expert system for diagnosing diabetics and artificial neural network (ANN) applications for diagnosing breast cancer, acidosis diseases, and lung cancer. This paper is mainly focusing on the development of protein shortage disease diagnosing application using Backpropagation Neural Network (BPNN) technique. It covers two classes of protein shortage that are Heavy Protein Deficiency. On top of this, a BPNN model is constructed based on result analysis of the training and testing from the developed application. The model has been successfully tested using new data set. It shows that the BPNN is able to early diagnose heavy protein deficiency accurately. Keywords— Artificial Neural Network, Backpropagation Neural Network, Protein Deficiency.


2021 ◽  
Vol 10 (1) ◽  
pp. 113-119
Author(s):  
Muhammad Ezar Al Rivan ◽  
Gabriela Repca Sung

Papaya is one of the fruits that grows in the tropics area, one of the kinds that people’s love the most is papaya California. The quality identification of papaya California fruit can be measured using color, defect, and size. Color, defect and size extracted from image of papaya. The dataset that used in this research are 150 images papaya California. The dataset consist of 3 quality there are good, fair and low.  Identification of papaya using the backpropagation neural network method with 17 training function in each training data with 3 different neurons in the hidden layer. The best result of the test is using training function trainrp with 10 neurons is 81,33% for accuracy, 73,37% for precision, and 72% for recall, with 20 neurons is 82,67% for accuracy, 75,24% for precision, and 74% for recall, and with 25 neurons is 80,89% for accuracy, 74,42% for precision, and 71,33% for recall.


2016 ◽  
Vol 78 (12-3) ◽  
Author(s):  
Saadi Ahmad Kamaruddin ◽  
Nor Azura Md Ghani ◽  
Norazan Mohamed Ramli

Neurocomputing have been adapted in time series forecasting arena, but the presence of outliers that usually occur in data time series may be harmful to the data network training. This is because the ability to automatically find out any patterns without prior assumptions and loss of generality. In theory, the most common training algorithm for Backpropagation algorithms leans on reducing ordinary least squares estimator (OLS) or more specifically, the mean squared error (MSE). However, this algorithm is not fully robust when outliers exist in training data, and it will lead to false forecast future value. Therefore, in this paper, we present a new algorithm that manipulate algorithms firefly on least median squares estimator (FFA-LMedS) for  Backpropagation neural network nonlinear autoregressive (BPNN-NAR) and Backpropagation neural network nonlinear autoregressive moving (BPNN-NARMA) models to reduce the impact of outliers in time series data. The performances of the proposed enhanced models with comparison to the existing enhanced models using M-estimators, Iterative LMedS (ILMedS) and Particle Swarm Optimization on LMedS (PSO-LMedS) are done based on root mean squared error (RMSE) values which is the main highlight of this paper. In the meanwhile, the real-industrial monthly data of Malaysian Aggregate cost indices data set from January 1980 to December 2012 (base year 1980=100) with different degree of outliers problem is adapted in this research. At the end of this paper, it was found that the enhanced BPNN-NARMA models using M-estimators, ILMedS and FFA-LMedS performed very well with RMSE values almost zero errors. It is expected that the findings would assist the respected authorities involve in Malaysian construction projects to overcome cost overruns.


Sign in / Sign up

Export Citation Format

Share Document