Research on the Tribological Property of Synthetic Multilayer MoS2/FeS Film under Dry Condition

2011 ◽  
Vol 217-218 ◽  
pp. 1117-1122 ◽  
Author(s):  
Jia Jie Kang ◽  
Cheng Biao Wang ◽  
Hai Dou Wang ◽  
Bin Shi Xu ◽  
Jia Jun Liu ◽  
...  

In this paper, we adopted a novel method, namely, magnetron sputtering + low temperature ion sulfurizing composite technology to prepare synthetic MoS2/FeS multilayer film. The obtained film has a quite smooth surface with plenty of spherical particles. The friction tests were carried out on a ball-on-disc tester under dry condition. During the whole test, the friction coefficient of the MoS2/FeS multilayer film was always lower than that of the original 1045 steel and FeS film. In addition, the wear scar depth of the MoS2/FeS multilayer film was also low. It is undoubtedly that the synthetic MoS2/FeS multilayer film possesses excellent friction-reducing and wear-resisting behaviors.

2011 ◽  
Vol 217-218 ◽  
pp. 1102-1107 ◽  
Author(s):  
Li Na Zhu ◽  
Cheng Biao Wang ◽  
Hai Dou Wang ◽  
Bin Shi Xu ◽  
Jia Jun Liu ◽  
...  

In this paper, the structure and tribological properties of synthetic MoS2 film prepared by a novel compound technology—combining magnetron sputtering with low temperature ion sulfurizing were investigated. X-ray diffraction (XRD) pattern for the MoS2 film implies that the film mainly consists of Mo and MoS2 phases. The hardness of the synthetic MoS2 film was 7.44 GPa which was higher than that of the FeS film. The sliding tribological behavior of the MoS2 film was studied by ball-on-disc tests. The results showed that the synthetic MoS2 film possessed excellent friction-reducing and wear-resisting properties. In addition, the tribological behaviors of the MoS2 film were superior to those of the FeS film and original 1045 steel.


2007 ◽  
Vol 336-338 ◽  
pp. 955-957 ◽  
Author(s):  
Shi Bo Li ◽  
Hong Xiang Zhai ◽  
Guo Ping Bei ◽  
Yang Zhou

Ti2SnC has been fabricated from Ti, Sn and graphite elemental powders by mechanically activated low-temperature synthesis (MALS) technique. Superfine powders were obtained after milling the elemental powders for only 1 h with a charge ratio of 20:1. The mechanically alloyed powders were then pressureless sintered at different temperatures at Ar atmosphere for 0.5 h. High content of Ti2SnC was obtained at 950 oC, which is lower than the previously reported temperatures of above 1200 oC by sintering the conventional mixture powders. The microstructure shows that Ti2SnC grains with plate-like shape and smooth surface are less than 5 μm in size. The result demonstrates that the MALS is a novel method for the synthesis of Ti2SnC or other ceramic powders.


RSC Advances ◽  
2020 ◽  
Vol 10 (16) ◽  
pp. 9633-9642
Author(s):  
Ning Kong ◽  
Boyu Wei ◽  
Dongshan Li ◽  
Yuan Zhuang ◽  
Guopeng Sun ◽  
...  

Pure MoS2 coatings are easily affected by oxygen and water vapor to form MoO3 and H2SO4 which cause a higher friction coefficient and shorter service life.


2011 ◽  
Vol 217-218 ◽  
pp. 1113-1116 ◽  
Author(s):  
Jia Jie Kang ◽  
Cheng Biao Wang ◽  
Hai Dou Wang ◽  
Bin Shi Xu ◽  
Jia Jun Liu ◽  
...  

In this article, solid lubrication FeS film was prepared on the surface of AISI 1045 steel by means of low temperature ion sulfurizing process. Scanning electron microscopy (SEM) was utilized to observe the surface and cross-section morphologies of the sulfurized layer. The element distribution of the sulfurized layer surface was analyzed by X-ray energy spectrometer. The crystalline phases were determined by X-ray diffraction (XRD). X-ray stress determinator was utilized to measure the residual stress in the sulfurized layer. The nano-hardness and elastic modulus of the sulfurized layer were surveyed by a nano-indentation tester. The results showed that the surface of the FeS film was composed of many minute spherical particles with homogeneous grain size and distribution. The texture of the film was very loose with lots of micro-pores, and the crystallinity was well. There was compressive stress in the FeS film, and the stress value measured is -150 MPa. The average value of nano-hardness and elastic modulus were 4.02 GPa and 157.36 GPa respectively.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 599
Author(s):  
Handan Huang ◽  
Li Jiang ◽  
Yiyun Yao ◽  
Zhong Zhang ◽  
Zhanshan Wang ◽  
...  

The laterally graded multilayer collimator is a vital part of a high-precision diffractometer. It is applied as condensing reflectors to convert divergent X-rays from laboratory X-ray sources into a parallel beam. The thickness of the multilayer film varies with the angle of incidence to guarantee every position on the mirror satisfies the Bragg reflection. In principle, the accuracy of the parameters of the sputtering conditions is essential for achieving a reliable result. In this paper, we proposed a precise method for the fabrication of the laterally graded multilayer based on a planetary motion magnetron sputtering system for film thickness control. This method uses the fast and slow particle model to obtain the particle transport process, and then combines it with the planetary motion magnetron sputtering system to establish the film thickness distribution model. Moreover, the parameters of the sputtering conditions in the model are derived from experimental inversion to improve accuracy. The revolution and rotation of the substrate holder during the final deposition process are achieved by the speed curve calculated according to the model. Measurement results from the X-ray reflection test (XRR) show that the thickness error of the laterally graded multilayer film, coated on a parabolic cylinder Si substrate, is less than 1%, demonstrating the effectiveness of the optimized method for obtaining accurate film thickness distribution.


2015 ◽  
Vol 284 ◽  
pp. 90-93 ◽  
Author(s):  
Hikmet Cicek ◽  
Ihsan Efeoglu ◽  
Yaşar Totik ◽  
Kadri Vefa Ezirmik ◽  
Ersin Arslan

2015 ◽  
Vol 345 ◽  
pp. 319-328 ◽  
Author(s):  
V. Johánek ◽  
M. Václavů ◽  
I. Matolínová ◽  
I. Khalakhan ◽  
S. Haviar ◽  
...  

Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Sign in / Sign up

Export Citation Format

Share Document