CAE Optimization of Hot Runner Sequential Injection Molding for Car Interior Trim Panels

2011 ◽  
Vol 221 ◽  
pp. 460-465
Author(s):  
Lu Lu Yang ◽  
Hui Min Zhang ◽  
Meng Li

In the injection molding of large and thin plastics parts, multiple gates are used, so many weld lines would generate because melted plastic has more than two directions of flow. The existence of weld 1ine harms not only appearance, but also the mechanical properties of products. The paper studied the method of sequential injection to solve this problem. Taking car door trim panels for example, the flow simulations were done by Moldflow software. Conventional hot runner injection and sequential hot runner injection, different gating locations were compared. Optimization result was got. It was proven that sequential injection system can improve the quality of the surface (especially the weld 1ine) and the performance of the actual products thereby this can be guiding significance for the practical production.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 778 ◽  
Author(s):  
Wei Guo ◽  
Qing Yang ◽  
Huajie Mao ◽  
Zhenghua Meng ◽  
Lin Hua ◽  
...  

A combined in-mold decoration and microcellular injection molding (IMD/MIM) method by integrating in-mold decoration injection molding (IMD) with microcellular injection molding (MIM) was proposed in this paper. To verify the effectiveness of the IMD/MIM method, comparisons of in-mold decoration injection molding (IMD), conventional injection molding (CIM), IMD/MIM and microcellular injection molding (MIM) simulations and experiments were performed. The results show that compared with MIM, the film flattens the bubbles that have not been cooled and turned to the surface, thus improving the surface quality of the parts. The existence of the film results in an asymmetrical temperature distribution along the thickness of the sample, and the higher temperature on the film side leads the cell to move toward it, thus obtaining a cell-offset part. However, the mechanical properties of the IMD/MIM splines are degraded due to the presence of cells, while specific mechanical properties similar to their solid counterparts are maintained. Besides, the existence of the film reduces the heat transfer coefficient of the film side so that the sides of the part are cooled asymmetrically, causing warpage.


2012 ◽  
Vol 445 ◽  
pp. 313-318
Author(s):  
Angel Fernandez ◽  
Manuel Muniesa ◽  
Carlos Javierre ◽  
Victor Camanes

Nowadays polymer based nanocomposites are very interesting to manufacture products of less weight and higher mechanical properties and specific performance depending on the morphology of nanoscaled reinforcement. Most of these potential improvements are focused to the challenges newer products require like HEV (hybrid or electrical vehicles) for example. The development of these new products requires the full characterization of the rheological and mechanical behavior of the materials and the correct preparation of the raw material for further processing. As an example two nanocomposite blends were prepared letting down a masterbach of PA6+30% HNT (Halloysite nanotubes) to 3% and 6% of HNT content in a PA6 matrix of (BADADUR). The letting down process was developed in an extrusion-compounding machine (COPERION ZSK 26) and the rheological behavior was determined in a capillar rheometer obtaining the viscosity curves of the material needed for injection molding simulation. The products obtained were used for injection molding of test specimens in an electrical injection machine (JSW EL II 85). In addition, the letting down process was done directly in the injection machine in order to establish the relevance of the previous extrusion process. The probes obtained were analyzed by DSC and FTIR to determine the functional groups of the resultant product and SEM and TEM to determine the quality of the dispersion of the nanotubes. The probes were finally tested to determine its stiffness and tensile properties. The results showed the feasibility to develop parts made of nanocomposite with improved performance with scaled industry equipment with natural reinforcements..


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Tim Tofan ◽  
Rimantas Stonkus ◽  
Raimondas Jasevičius

The aim of this research is to investigate related effect of dyeability to linen textiles related to different printing parameters. The study investigated the change in color characteristics when printing on linen fabrics with an inkjet MIMAKI Tx400-1800D printer with pigmented TP 250 inks. The dependence of color reproduction on linen fabrics on the number of print head passes, number of ink layers to be coated, linen fabric density, and different types of linen fabric was investigated. All this affects the quality of print and its mechanical properties. The change in color characteristics on different types of linen fabrics was determined experimentally. We determine at which print settings the most accurate color reproduction can be achieved on different linen fabrics. The difference between the highest and the lowest possible number of head passages was investigated. The possibilities of reproducing different linen fabric colors were determined.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4329
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

An experimental study was performed on a low-density plasma discharge using two different configurations of the plasma cell cathode, namely, the one mesh system electrodes (OMSE) and the one mesh and three system electrodes (OMTSE), to determine the electrical characteristics of the plasma such as current–voltage characteristics, breakdown voltage (VB), Paschen curves, current density (J), cathode fall thickness (dc), and electron density of the treated sample. The influence of the electrical characteristics of the plasma fluid in the cathode fall region for different cathode configuration cells (OMSE and OMTSE) on the performance quality of a surgical gown was studied to determine surface modification, treatment efficiency, exposure time, wettability property, and mechanical properties. Over a very short exposure time, the treatment efficiency for the surgical gown surface of plasma over the mesh cathode at a distance equivalent to the cathode fall distance dc values of the OMTSE and for OMSE reached a maximum. The wettability property decreased from 90 to 40% for OMTSE over a 180 s exposure time and decreased from 90 to 10% for OMSE over a 160 s exposure time. The mechanisms of each stage of surgical gown treatment by plasma are described. In this study, the mechanical properties of the untreated and treated surgical gown samples such as the tensile strength and elongation percentage, ultimate tensile strength, yield strength, strain hardening, resilience, toughness, and fracture (breaking) point were studied. Plasma had a more positive effect on the mechanical properties of the OMSE reactor than those of the OMTSE reactor.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 847
Author(s):  
Anita Zapałowska ◽  
Natalia Matłok ◽  
Miłosz Zardzewiały ◽  
Tomasz Piechowiak ◽  
Maciej Balawejder

The aim of this research was to show the effect of the ozonation process on the quality of sea buckthorn (Hippophae rhamnoides L.). The quality of the ozonated berries of sea buckthorn was assessed. Prior to and after the ozone treatment, a number of parameters, including the mechanical properties, moisture content, microbial load, content of bioactive compounds, and composition of volatile compounds, were determined. The influence of the ozonation process on the composition of volatile compounds and mechanical properties was demonstrated. The ozonation had negligible impact on the weight and moisture of the samples immediately following the treatment. Significant differences in water content were recorded after 7 days of storage. It was shown that the highest dose of ozone (concentration and process time) amounting to 100 ppm for 30 min significantly reduced the water loss. The microbiological analyses showed the effect of ozone on the total count of aerobic bacteria, yeast, and mold. The applied process conditions resulted in the reduction of the number of aerobic bacteria colonies by 3 log cfu g−1 compared to the control (non-ozonated) sample, whereas the number of yeast and mold colonies decreased by 1 log cfu g−1 after the application of 100 ppm ozone gas for 30 min. As a consequence, ozone treatment enhanced the plant quality and extended plant’s storage life.


2010 ◽  
Vol 39 (5) ◽  
pp. 775-780 ◽  
Author(s):  
Hu Youhua ◽  
Li Yimin ◽  
He Hao ◽  
Lou Jia ◽  
Tang Xiao

2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


2007 ◽  
Vol 336-338 ◽  
pp. 1791-1792
Author(s):  
Hai Ping Cui ◽  
Jun Yan ◽  
Shi Guo Du ◽  
Xin Kang Du

Al2O3-Al2Cu3 multiphase coatings were prepared on the surface of steel by reactive flame spray. The binding strength, microhardness and abrasion quality of the coatings were measured and analyzed. The influence of the agglomerate size on the properties of the coatings was emphatically studied to choose suitable size range for Al-CuO reactive system. The results showed that coatings prepared by using –150∼+250 meshes agglomerates exhibited good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document