Effect of Heat Treatment Process on Microstructure and Properties in Low Carbon Si-Mn Q&P Steel

2011 ◽  
Vol 233-235 ◽  
pp. 1009-1013
Author(s):  
Cai Zhao ◽  
Di Tang

The mechanical properties of Low Carbon Si-Mn Q&P steel are strongly affected by the conditions of heat treatment. Microstructures and mechanical properties of Low Carbon Si-Mn Q&P steel at different partitioning temperature and holding time was investigated. The microstructure was analysed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that the microstructure of Q&P steel is carbon-depleted lath martensite and carbon enriched retained austenite. The retained austenite appear film-type between the laths. Higher partitioning temperature and longer partitioning time can obtain more retained austenite. It is shown that with increasing partitioning time ultimate tensile strength decreases, while elongation increases obviously. Carbon-enriched metastable retained austenite is considered beneficial because the TRIP phenomenon during deformation can contribute to formability and energy absorption.

2010 ◽  
Vol 654-656 ◽  
pp. 90-93 ◽  
Author(s):  
Xiao Dong Wang ◽  
Zheng Hong Guo ◽  
Yong Hua Rong

A novel heat treatment process, that is, quenching-partitioning-tempering (Q-P-T) process, has been developed as a new way to obtain ultrahigh strength martensitic structural steel containing retained austenite and alloying carbide. In order to display merit of the Q-P-T process, a medium carbon Nb-microalloyed steel is treated by Q-P-T 1-step process and Q-P-T 2-step process, as well as treated by the transformation induced plasticity heat treatment process and quenching and tempering process, respectively. The results show that Q-P-T samples possess better mechanical properties than those treated by other heat treatment processes. The origin of the good mechanical properties is analyzed based on the phase and microstructure characterization using X-ray diffraction, scanning electron microscopy and transmission electron microscopy.


2013 ◽  
Vol 749 ◽  
pp. 303-307 ◽  
Author(s):  
Kang Kang Ren ◽  
Yong Lin Kang ◽  
Shuai Zhu

The microstructure and properties of Q&P steel were studied by means of tensile test, OM and SEM after simulating heat treatment process in salt bath furnace. The results showed that the main microstructure of Q&P steel was lath martensite and retained film austenite. With the increase of partitioning time, the morphology of the parallel martensite lath became clear and ordered. With the trivialness and disorder with massive martensite appearing, the yield strengths and tensile strength decreased initially and then increased. On the other hand, the elongation increased initially and then decreased. This was because of that the retained austenite is unstable at the beginning for low carbon content, and the carbide precipitated after a long partitioning time. Therefore, there was an optimum partitioning time to obtain the best properties combination. Under 250 quenching temperature and 350 partitioning temperature, partitioning time was 60s, the tensile strength and elongation were 1027MPa and 27%, respectively. The product of strength and elongation was up to 27729MPa·%.


2021 ◽  
Vol 1035 ◽  
pp. 344-349
Author(s):  
Ye Qin Zhang ◽  
Ping Zhong ◽  
Huan Feng Li ◽  
Wen Qiang Zhang

The effect of solution temperature and aging temperature on mechanical properties and microstructure of the new ultrahigh strength stainless steel S280 was investigated by heat treatment process experiment. The results showed that the optimal heat treatment process was as follows: heating to 1080 °C,holding for a hour, and quenching in oil; cooling to -73 °C, holding for 2 hour, and warming in air to room temperature; heating to 540~550 °C, holding for 4 hour, and cooling in air. Choosing this heat treatment process, the steel can get good coordination between strength and toughness. Analyzed by HREM, the steel had desirable microstructures, which were fine lath martensite matrix with high density dislocation and finely dispersed precipitate strengthening phase, and film-like reversed austenite precipitated from the boundary of martensite.


2011 ◽  
Vol 142 ◽  
pp. 95-98
Author(s):  
Jian Sheng Ding ◽  
Lin Xun Liu ◽  
Jin Chun Feng

The supercritical material F92 steel is regarded as the research object, and the influence law of heat treatment process on its tissue and properties is analyzed. The results show that when the temperature of heat treatment quenching and tempering is too low, a large number of alloying elements cannot be fully integrated into the austenite, and the optimal obdurability of F92 steel is still not fully exploited; while too high temperature of heat treatment quenching and tempering will weaken the strength, plasticity and toughness. When F92 steel is processed by heating quenching at 1050 °C and tempering at 680 °C, its tissue is the smaller tempered lath martensite. The carbide is precipitated, generating precipitation strengthening, which gives it a high rupture strength and toughness. F92 steel is with high mechanical properties when heating quenched at 1050 °C and tempered 680 °C.


2020 ◽  
Vol 4 (1) ◽  
pp. 52-59
Author(s):  
Siti Noradila Abdullah ◽  
Norazlianie Sazali ◽  
Ahmad Shahir Jamaludin

For any process that engaged with changes of chemical properties and physical is a heat treatment process by cooling or heating a metal. The technique for heat treatment includes, case hardening, annealing, tempering and precipitation strengthening, quenching and tempering. The mechanical properties like hardness, toughness and ductility can be altered by intense heat treating on steel to produce different mechanical properties. This matters with the carbon content in low carbon steel such as mild steel with above 0.4% carbon, in Medium carbon steel with above 0.8% carbon, and in High Carbon Steel with up to 2% carbon content in steels. To change the characteristics of metals and alloys is by heat treatment process where by altering the diffusion and cooling rate within its microstructure to make them suitable for any kind of usage by changing the grain size at different phases and changing the molecular arrangement.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1109-1114
Author(s):  
Xin Lei ◽  
Hui Huang ◽  
S.P. Wen

This study investigated the mechanical properties and microstructures of Er-containing Al–Mg alloys. The research found that the H114-T sheet of Er-containing Al–Mg alloys showed a relative good comprehensive performance in mechanical properties. With the special rolling and heat treatment process, this H114-T sheet showed different morphology of microstructures with the other sheets in Er-containing Al–Mg alloys. Grains in H114-T sheet performed irregular shape polygon, a number of subgrains appeared in grains, the amount of dislocations in grains decreased. H114-T sheet possessed a lot of Copper texture, this may be one of important factors influenced the mechanical properties.


2014 ◽  
Vol 1082 ◽  
pp. 202-207 ◽  
Author(s):  
Shu Yan ◽  
Xiang Hua Liu

A low carbon steel was treated by quenching and partitioning (Q&P) process, and a detailed characterization of the microstructural evolution and testing of mechanical properties were carried out. The resulted mechanical properties indicate that with the partitioning time increasing, the tensile strength decreases rapidly first and then remains stable, and the total elongation increases first then decreases. The investigated steel subjected to Q&P process exhibits excellent products of strength and elongation (17.8-20.6 GPa•%). The microstructural evolution of martensite matrix during the partitioning step was observed, and the morphology and content of retained austenite were characterized. The working hardening behavior of the samples was analyzed, and the retained austenite with higher carbon content contributes to the uniform elongation more effectively.


2007 ◽  
Vol 546-549 ◽  
pp. 825-828 ◽  
Author(s):  
Man Jin ◽  
Jing Li ◽  
Guang Jie Shao

The precipitation behaviors and microstructures of nano-precipitates in AA6082 Al-Mg-Si alloy with and without Cu additions during heat treatment process were studied using hardness measurements, TEM, mechanical tests and 3DAP. Meanwhile, the softening process of 6082 alloys with Cu and without Cu, isothermally conditioned at 250°C, has also been investigated. It was found that the rate of age hardening, mechanical properties and thermal stability are higher for the Cu-containing alloy. The TEM and 3DAP observations showed that Q’ precipitates were existed after aged at 170°C for 8h in the alloy with Cu addition. Comparing the hardness, mechanical properties and thermal stability curves, it was concluded that the Q’ precipitates play a major role in improving the age hardening kinetics and properties of 6082 alloy with Cu addition.


Sign in / Sign up

Export Citation Format

Share Document