Experimental Study on Bit Tooth Made of Nano-Cemented Carbide Composites in Air Hammer Drilling

2011 ◽  
Vol 233-235 ◽  
pp. 2955-2961
Author(s):  
Zhi Qiang Huang ◽  
Qin Li ◽  
Wei Li ◽  
Yi Zhou ◽  
Shi Jin Peng ◽  
...  

It is fracture, wear and abscission of bit tooth that make up of the main failure forms for the air hammer bit, which have badly restricted the further popularization and application of the air hammer drilling. The main reason is that the ordinary cemented carbide tooth is difficult to meet the complex conditions of the air the hammer drilling. Therefore, this research puts forward a new thought that we strengthen the carbide tooth by adding the nano-Al2O3into the substrate materials of WC-Co. According to the study of several formulas of nano-composites, the test of sample performance, experimental study of impact abrasive wear and microstructure, we draw some conclusions that adding amount of nano-Al2O3can refine grain, make microstructure more uniform and improve the wear resistance of composites, but also can enhance the strength of boundaries of WC-Co and transform the fracture form from the intergranular fracture to the transgranular fracture. Meanwhile, it can also improve nano-composites comprehensive performance by adding rare earth. The result for site test of bit shows that comparing with the bit equipped the original carbide teeth, the efficiency of rock breaking of the bit equipped nano-composites teeth increase by 20% and the service life increase by 80%.

Rare Metals ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Tian’en Yang ◽  
Ji Xiong ◽  
Lan Sun ◽  
Zhixing Guo ◽  
Kangcai Qin

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1302
Author(s):  
Zhongnan Xiang ◽  
Zhanjiang Li ◽  
Fa Chang ◽  
Pinqiang Dai

In this paper, the effect of heat treatment on the microstructure and properties of a 0.8 μm WC–10%Co ultrafine cemented carbide was studied. The results show that the microstructural differences in ultrafine WC–Co cemented carbides without and with heat treatment are mainly reflected in the Co phase. For conventional cemented carbides, the hardness and wear resistance can be increased only at the expense of the toughness and strength. An ultrafine-grained WC–Co cemented carbide with good hardness and toughness can be obtained by strengthening the Co phase through an appropriate heat treatment process, and the service life of the ultrafine-grained WC–Co cemented carbide can be improved under actual cutting conditions.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 920 ◽  
Author(s):  
Saleh Wohaibi ◽  
Abdul Mohammed ◽  
Tahar Laoui ◽  
Abbas Hakeem ◽  
Akeem Adesina ◽  
...  

The present study investigates the high temperature tribological performance of spark plasma sintered, nano- and micron-sized tungsten carbide (WC) bonded by 9 wt.% cobalt (Co). The composites were fabricated using a two-step procedure of mixing followed by spark plasma sintering (SPS). Ball-on-disc wear tests were conducted at a normal load of 30 N, linear speed of 0.1 m/s under dry conditions and at three different temperatures (room temperature, 300 °C and 600 °C). Field emission scanning electron microscopy (FESEM), optical profilometry and energy dispersive X-ray (EDS) spectroscopy were used to analyze the surface morphology and the wear track area. At room temperature, it was observed that the nano-sized WC composites exhibited better wear resistance than the micron-sized WC composites. The wear resistance of the nano-sized samples declined significantly relative to that of the micron-sized samples with an increase in temperature. This decline in performance was attributed to the higher surface area of nano-sized WC particles, which underwent rapid oxidation at elevated temperatures, resulting in poor wear resistance. The wear rate observed at 600 °C for the micron-sized WC composites was 75% lower than that of the nano-sized cemented carbide. Oxidative wear was observed to be the predominant wear mechanism for both cemented carbide samples at elevated temperatures.


2018 ◽  
Vol 941 ◽  
pp. 2367-2372 ◽  
Author(s):  
Sara Saketi ◽  
Ulf Bexell ◽  
Jonas Östby ◽  
Mikael Olsson

Cemented carbides are the most common cutting tools for machining various grades of steels. In this study, wear behavior of two different cemented carbide grades with roughly the same fraction of binder phase and carbide phase but different grain size, in turning austenitic stainless steel is investigated. Wear tests were carried out against 316L stainless steel at 180 and 250 m/min cutting speeds.The worn surface of cutting tool is characterized using high resolution scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES) and 3D optical profiler.The wear of cemented carbide in turning stainless steel is controlled by both chemical and mechanical wear. Plastic deformation, grain fracture and chemical wear is observed on flank and rake face of the cutting insert. In the case of fine-grained, the WC grains has higher surface contact with the adhered material which promotes higher chemical reaction and degradation of WC grains, so chemical wear resistance of the composites is larger when WC grains are larger. The hardness of cemented carbide increase linearly by decreasing grain size, therefore mechanical wear resistance of the composites is larger when WC grains are smaller.


Sign in / Sign up

Export Citation Format

Share Document