Synthesis and Characterization of the Sizing Agents on the Carbon Fibers

2011 ◽  
Vol 233-235 ◽  
pp. 70-73
Author(s):  
Hong Bo Zhang ◽  
Chun Hui Su ◽  
Xiao Wei Zhu

The recent development of carbon fiber sizing agent was introduced in this article. The sizing agent used in carbon fiber was synthesized at a temperature range of 55-60°C using epoxy resin and vinyl acetate as a monomer together, octyl phenol ethoxylated(OP-10) as the emulsion agent, ammonium peroxydisulfate as the solicitation agent and water as the dispersant. At the same time, the optimum composition, the optimum process condition and the effects affecting the emulsion stability were discussed. The characterizations were measured by Scanning Electron Microscopy and TG. The results show that the synthesis process is simple, low cost, less polution and remarkbably stable. The diameter of the particle is 1.8μm and the decomposition temperature is 260°C.

Author(s):  
Parth Kotak ◽  
Jason Wilken ◽  
Kirsten Anderson ◽  
Caterina Lamuta

Abstract Ankle foot orthoses (AFOs) control the position and motion of the ankle, compensate for weakness, and correct deformities. AFOs can be classified as passive or powered. Powered AFOs overcome the limitations of passive AFOs by adapting their performance to meet a variety of requirements. However, the actuators currently used to power AFOs are typically heavy, bulky, expensive, or limited to laboratory settings. Thus, there is a strong need for lightweight, inexpensive, and flexible actuators for powering AFOs. In this technical brief, Carbon Fiber/Silicone Rubber (CF/SR) Twisted and Coiled Artificial Muscles (TCAMs) are proposed as novel actuators for powered AFOs. CF/SR TCAMs can lift up to 12,600 times their weight with an input power of only 0.025 W cm-1 and are fabricated from inexpensive materials through a low-cost manufacturing process. Additionally, they can provide a specific work of 758 J kg-1 when an input voltage of 1.64 V cm-1 is applied. A mechanical characterization of CF/SR TCAMs in terms of length/tension, tension/velocity, and active-passive length/tension is presented, and results are compared with the performance of skeletal muscles. A gait analysis demonstrates that CF/SR TCAMs can provide the performance required to supplement lower limb musculature and replicate the gait cycle of a healthy subject. Therefore, the preliminary results provided in this brief are a stepping stone for a dynamic AFO powered by CF/SR TCAMs.


2020 ◽  
Vol 869 ◽  
pp. 488-493
Author(s):  
Aues A. Beev ◽  
Svetlana Yu. Khashirova ◽  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Azamat Zhansitov ◽  
...  

The article presents the results of sizing of discrete carbon fibers with various substances and their effect on the properties of polyetherimide composites. As sizing agents, 1,3-diaminobenzene, 4,4'-dihydroxy-2,2-diphenylpropane, polyetherimide and oligoetherether sulfone were used. The study of physical and mechanical properties showed that all the substances used increase the properties of the carbon-filled composite based on polyetherimide. The highest mechanical properties are demonstrated by a composite containing carbon fibers treated with 1,3-diaminobenzene, which indicates improved compatibility of the filler and the polymer matrix and enhanced intermolecular interactions.


2013 ◽  
Vol 586 ◽  
pp. 253-256
Author(s):  
Zbyněk Sucharda ◽  
Tomas Suchy ◽  
Radek Sedláček ◽  
Karel Balik ◽  
Josef Šepitka ◽  
...  

The effect of sterilization on the structural integrity of the polydimethylsiloxane (PDMS) matrix composite reinforced with carbon fibers (CF) is investigated by nanoindentation test. We present the investigation of the influence of sterilization processes on fiber/matrix interphase properties. The effect of multiple widely-used steam sterilization processes on fibers/matrix interphase region properties was studied by modulus mapping test.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
John Wiselin ◽  
Sreeja Balakrishnapillai Suseela ◽  
Bycil Viswambaran Jalaja ◽  
Sherin Dhas Sahayadas Padma Ramani ◽  
Rajesh Prasad ◽  
...  

This paper investigates the possibilities of using carbon fiber as an inductor material by analyzing its inductive properties. Various shapes such as rectangular, spiral, helical, and cylindrical line structures have been simulated under various constraints using simulation software. Hardware implementations were also tested and both simulation and hardware results show that carbon fibers have the potential to replace copper inductor lines. The implemented spiral inductor produced a quality factor of 40 while producing an inductance of 4 nH at 1.2 GHz frequency.


2014 ◽  
Vol 2 (10) ◽  
pp. 3424-3429 ◽  
Author(s):  
Nolene Byrne ◽  
Alexis Leblais ◽  
Bronwyn Fox

We report on the use of ionic liquid co-solvents in the preparation of polyacrylonitrile–natural polymer carbon fibers as low cost environmentally friendly alternatives to conventional carbon fibers precursors and processing solvents.


2021 ◽  
Author(s):  
Yanyan Dong ◽  
Xiaojie Zhu ◽  
Fei Pan ◽  
Baiwen Deng ◽  
Zhicheng Liu ◽  
...  

Abstract Inspired by the nature, biomass-derived carbon attracts many attentions as the electromagnetic wave absorption (EMA) material owing to its advantages including abundant, low cost, renewable and environmentally friendly. However, it is difficult to make further breakthrough in effective absorption bandwidth (EAB) due to the impedance mismatch. In this work, mace-like carbon fibers/ZnO nanorods composites (BDCFs@ZnO) derived from Typha orientalis were prepared via a carbonization process and a subsequent hydrothermal process for the first time. The unique hollow structure of BDCFs and the construction of 3D interconnected conductive network led to the strong conduction loss and multiple reflection. The BDCFs sample possesses an excellent EMA performance with an ultralow filling ratio of only 5wt%. After directionally growing of the ZnO nanorods, an exceptional RL of -62.35 dB at 14.12 GHz and the EAB achieves 6.8 GHz at the thickness of 2.29 mm at a filling ratio of 15wt% were revealed. Mace-like ZnO with suitable permittivity effectively avoid the reflection result from direct contraction between EMW and carbon fiber, further improving impedance match. Simultaneously, a dielectric sum-quotient model was proposed to analyze the EMA performance of the samples. This work not only offers an inspiration for the development of dielectric loss-type EMA materials with lightweight and strong EMA performance by a sustainable, low-cost and easily available approach, but also provides an important strategy toward biomass-derived carbon-fiber-based composites in other fields.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 19-26 ◽  
Author(s):  
BILJANA M. BUJANOVIC ◽  
MANGESH J. GOUNDALKAR ◽  
THOMAS E. AMIDON

In conventional pulping technologies, lignin is used mainly as a low-cost source of energy. Small quantities of industrially produced lignin are used for the production of chemicals and materials. Biorefinery technologies are emerging that have an ultimate goal of replacing fossil sources for the production of fuels and other products. To achieve this goal effectively, biorefinery technologies must take advantage of lignin as the most abundant natural aromatic polymer and use it to add higher-value products to product portfolios. Lignin has the potential to be used in making a broad range of high-quality products, including carbon fibers, thermoplastics, and oxygenated aromatic compounds. Existing processes focus primarily on the quality of cellulose and result in a severely modified and contaminated lignin of relatively low value. Lignin produced in more flexible biorefinery operations is more uniform and less contaminated than currently available industrial lignins, opening the door for broader applications of lignin and lignin products. The results of isolation and characterization of lignin dissolved during hot-water extraction and some potential applications of this lignin are discussed.


Sign in / Sign up

Export Citation Format

Share Document