Preparation of polyacrylonitrile–natural polymer composite precursors for carbon fiber using ionic liquid co solvent solutions

2014 ◽  
Vol 2 (10) ◽  
pp. 3424-3429 ◽  
Author(s):  
Nolene Byrne ◽  
Alexis Leblais ◽  
Bronwyn Fox

We report on the use of ionic liquid co-solvents in the preparation of polyacrylonitrile–natural polymer carbon fibers as low cost environmentally friendly alternatives to conventional carbon fibers precursors and processing solvents.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
John Wiselin ◽  
Sreeja Balakrishnapillai Suseela ◽  
Bycil Viswambaran Jalaja ◽  
Sherin Dhas Sahayadas Padma Ramani ◽  
Rajesh Prasad ◽  
...  

This paper investigates the possibilities of using carbon fiber as an inductor material by analyzing its inductive properties. Various shapes such as rectangular, spiral, helical, and cylindrical line structures have been simulated under various constraints using simulation software. Hardware implementations were also tested and both simulation and hardware results show that carbon fibers have the potential to replace copper inductor lines. The implemented spiral inductor produced a quality factor of 40 while producing an inductance of 4 nH at 1.2 GHz frequency.


2021 ◽  
Author(s):  
Yanyan Dong ◽  
Xiaojie Zhu ◽  
Fei Pan ◽  
Baiwen Deng ◽  
Zhicheng Liu ◽  
...  

Abstract Inspired by the nature, biomass-derived carbon attracts many attentions as the electromagnetic wave absorption (EMA) material owing to its advantages including abundant, low cost, renewable and environmentally friendly. However, it is difficult to make further breakthrough in effective absorption bandwidth (EAB) due to the impedance mismatch. In this work, mace-like carbon fibers/ZnO nanorods composites (BDCFs@ZnO) derived from Typha orientalis were prepared via a carbonization process and a subsequent hydrothermal process for the first time. The unique hollow structure of BDCFs and the construction of 3D interconnected conductive network led to the strong conduction loss and multiple reflection. The BDCFs sample possesses an excellent EMA performance with an ultralow filling ratio of only 5wt%. After directionally growing of the ZnO nanorods, an exceptional RL of -62.35 dB at 14.12 GHz and the EAB achieves 6.8 GHz at the thickness of 2.29 mm at a filling ratio of 15wt% were revealed. Mace-like ZnO with suitable permittivity effectively avoid the reflection result from direct contraction between EMW and carbon fiber, further improving impedance match. Simultaneously, a dielectric sum-quotient model was proposed to analyze the EMA performance of the samples. This work not only offers an inspiration for the development of dielectric loss-type EMA materials with lightweight and strong EMA performance by a sustainable, low-cost and easily available approach, but also provides an important strategy toward biomass-derived carbon-fiber-based composites in other fields.


2011 ◽  
Vol 233-235 ◽  
pp. 70-73
Author(s):  
Hong Bo Zhang ◽  
Chun Hui Su ◽  
Xiao Wei Zhu

The recent development of carbon fiber sizing agent was introduced in this article. The sizing agent used in carbon fiber was synthesized at a temperature range of 55-60°C using epoxy resin and vinyl acetate as a monomer together, octyl phenol ethoxylated(OP-10) as the emulsion agent, ammonium peroxydisulfate as the solicitation agent and water as the dispersant. At the same time, the optimum composition, the optimum process condition and the effects affecting the emulsion stability were discussed. The characterizations were measured by Scanning Electron Microscopy and TG. The results show that the synthesis process is simple, low cost, less polution and remarkbably stable. The diameter of the particle is 1.8μm and the decomposition temperature is 260°C.


2013 ◽  
Vol 772 ◽  
pp. 303-308 ◽  
Author(s):  
Ben Yong Han ◽  
Wu Di Zhang ◽  
Yu Bao Chen ◽  
Fang Yin ◽  
Shi Qing Liu ◽  
...  

onic liquid is a green catalyzer and solvent which can be designed by changing the structure of its cation or anion. Ionic liquid has been used in diverse chemical reactions. Especially, Ionic liquids as environmentally friendly catalysts were applied in biodiesel production. Preparation of biodiesel catalyzed by ionic liquids have many merits, such as no corrosion to equipment, no pollution to environment, and reusability. In this paper, the advances in the base ionic liquids catalysts and their application in biodiesel production were reviewed. The characterization of the ionic liquids were summarized. In addition, the prospect for the application of the basic ionic liquids to catalyze biodiesel production was also stated. Since the cost of ionic liquid may be an issue, there are some challenges to be faced, such as the production of ionic liquids with low cost, easy recovery and with the possibility of reutilization of the catalyst for several cycles.


2020 ◽  
Vol 6 (3) ◽  
pp. 39-43
Author(s):  
G. Shaidurova ◽  
E. Gatina ◽  
Ya. Shevyakov

The results of studies on the possibility of using secondary carbon fiber extracted from the volume of spent polymer composite material by high-temperature pyrolysis for reinforcing chipboards are reflected. Studies were conducted on the physicomechanical characteristics of reinforced slabs, which showed a significant increase in performance. The results obtained make it possible to assess the possibility of the promising use of secondary fibers, which will provide a solution to the problem of completing the life cycle of polymer composite materials.


2021 ◽  
Vol 5 (11) ◽  
pp. 294
Author(s):  
Imad Hanhan ◽  
Michael D. Sangid

Recent advancements have led to new polyacrylonitrile carbon fiber precursors which reduce production costs, yet lead to bean-shaped cross-sections. While these bean-shaped fibers have comparable stiffness and ultimate strength values to typical carbon fibers, their unique morphology results in varying in-plane orientations and different microstructural stress distributions under loading, which are not well understood and can limit failure strength under complex loading scenarios. Therefore, this work used finite element simulations to compare longitudinal stress distributions in A42 (bean-shaped) and T650 (circular) carbon fiber composite microstructures. Specifically, a microscopy image of an A42/P6300 microstructure was processed to instantiate a 3D model, while a Monte Carlo approach (which accounts for size and in-plane orientation distributions) was used to create statistically equivalent A42/P6300 and T650/P6300 microstructures. First, the results showed that the measured in-plane orientations of the A42 carbon fibers for the analyzed specimen had an orderly distribution with peaks at |ϕ|=0∘,180∘. Additionally, the results showed that under 1.5% elongation, the A42/P6300 microstructure reached simulated failure at approximately 2108 MPa, while the T650/P6300 microstructure did not reach failure. A single fiber model showed that this was due to the curvature of A42 fibers which was 3.18 μm−1 higher at the inner corner, yielding a matrix stress that was 7 MPa higher compared to the T650/P6300 microstructure. Overall, this analysis is valuable to engineers designing new components using lower cost carbon fiber composites, based on the micromechanical stress distributions and unique packing abilities resulting from the A42 fiber morphologies.


2021 ◽  
Vol 4 (12(112)) ◽  
pp. 61-70
Author(s):  
Volodymyr Dudin ◽  
Dmytro Makarenko ◽  
Oleksii Derkach ◽  
Yevhen Muranov

This paper reports a comprehensive laboratory study into the thermophysical, physical-mechanical characteristics, and tribological properties of the designed composite materials based on polytetrafluoroethylene. In the structures of machines and mechanisms, a significant role belongs to the tribological conjugations made from polymeric and polymer-composite materials. The reliability of machines, in general, depends to a large extent on the reliability of movable connections. Composite materials of nonmetallic origin have a low cost, they are resistant to most aggressive chemicals and are capable of operating under conditions without lubrication. It was established that the characteristics and properties of materials must be adapted to the working conditions of separately considered tribological conjugations. The mechanisms of thermal destruction have been established, both in the basic material and the carbon fiber based on it. It was found that carbon fiber, regardless of its content (quantity) in the polymer-composite material based on polytetrafluoroethylene, is mainly oriented perpendicular to the force application plane. It was found that with an increase in the carbon fiber content from 10 to 40 % by weight, the heat capacity decreases by 16‒39 % compared to the main material. The optimal operating modes for the designed composite materials have been substantiated on the basis of a pv factor: under a dry friction mode – up to 4 MPa∙m/s; at friction with lubrication – up to 36.4 MPa∙m/s. The dependence has been established of the friction coefficient on the operating modes of a composite material based on polytetrafluoroethylene containing 20 % by weight of carbon fiber when lubricated with oil and water. The results reported here make it possible to synthesize the physical-mechanical characteristics and tribological properties of composite materials in accordance with the required modes of tribological conjugation.


2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractSince the cytocompatibility of carbon nanofibers with respect to neural applications remains largely uninvestigated, the objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers. Carbon fiber substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 200 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Astrocytes (glial scar tissue-forming cells) and pheochromocytoma cells (PC-12; neuronal-like cells) were seeded separately onto the substrates. Results provided the first evidence that astrocytes preferentially adhered on the carbon fiber that had the largest diameter and the lowest surface energy. PC-12 cells exhibited the most neurites on the carbon fiber with nanodimensions and low surface energy. These results may indicate that PC-12 cells prefer nanoscale carbon fibers while astrocytes prefer conventional scale fibers. A composite was formed from poly-carbonate urethane and the 60 nm carbon fiber. Composite substrates were thus formed using different weight percentages of this fiber in the polymer matrix. Increased astrocyte adherence and PC-12 neurite density corresponded to decreasing amounts of the carbon nanofibers in the poly-carbonate urethane matrices. Controlling carbon fiber diameter may be an approach for increasing implant contact with neurons and decreasing scar tissue formation.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Mina Keshvardoostchokami ◽  
Sara Seidelin Majidi ◽  
Peipei Huo ◽  
Rajan Ramachandran ◽  
Menglin Chen ◽  
...  

Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.


Sign in / Sign up

Export Citation Format

Share Document