Study on PTH/PANI/AC Composites as Electrode Materials for Supercapacitors

2011 ◽  
Vol 239-242 ◽  
pp. 513-516
Author(s):  
Feng Ge Gao ◽  
Yan Hong Tian ◽  
Xue Jun Zhang

Polythionphene (PTH)/polyaniline (PANI)/activated carbon (AC) composites as electrode materials for supercapacitors were synthesized by in-situ polymerization of thionphene on PANI/AC. The surface morphology and the molecular structure of the composites were examined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical performances were tested by cyclic voltammetry, Galvanostatic charge-discharge and electrochemical impedance spectrometry. Results show that the PTH/PANI/AC composites exhibit better large current charge-discharge performance and higher capacitance than those of PANI/AC. The capacitance value of the composites would reach 597.4 F/g. The PTH/PANI/AC composites also have better cycle stability than that of PANI/AC.

2017 ◽  
Vol 46 ◽  
pp. 212-224 ◽  
Author(s):  
Han Xun Qiu ◽  
Xue Bing Han ◽  
Jing Li ◽  
Fei Long Qiu ◽  
Jun He Yang

A microwave irradiation involved process was applied to fabrication of graphene/polyaniline nanocomposite via in-situ polymerization of aniline monomers on graphene sheets. Structure and morphology of composites were characterized through scanning electron microscopy, Raman spectra, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectra. Electrochemical performances for energy storage applications were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements. Owing to the homogeneous coating of polyanilline on the large surface of graphene, graphene/polyaniline composite-based electrode exhibits remarkably enhanced capacitive behavior with a specific capacitance of 429 F/g at 0.2 A g-1, a good cyclic stability and an excellent conducting behavior, which are much superior to those of individual components of composites. The improved electrochemical behavior of the composite resulting from the irradiation of microwave suggests the promising potentials for supercapacitors.


2011 ◽  
Vol 211-212 ◽  
pp. 440-444 ◽  
Author(s):  
Shu Hui Tong ◽  
Chuan Li Qin ◽  
Zheng Jin ◽  
Xue Song Wang ◽  
Xu Duo Bai

Activated nitrogen-enriched carbon/reduced expanded graphite composites (ANC/REG-c) with different composite ratio were prepared by in-situ polymerization, carbonization, activation and reduction of aniline and expanded graphite. These were characterized by XPS, SEM and electrochemical measurements. XPS shows that N atoms exist in the ANC and ANC/REG-c. Compared to mechanical mixture of ANC and REG(ANC/REG-m), ANC/REG-c shows lower resistance and higherCp1(185.4 F/g) vs 124.3 F/g of ANC/REG-m measured by CV due to the introduction of the composite sturcture. When the composite ratio of ANC/REG-c is 6:1, the ANC/REG-c shows the highestCp1(264.0 F/g) and its symmetric supercapacitor also shows the best synthetical electrochemical performances. The optimal supercapacitor presents good cycle stability. ANC/REG-c is a suitable electrode material for supercapacitors.


2010 ◽  
Vol 97-101 ◽  
pp. 1582-1585 ◽  
Author(s):  
Yan Hong Tian ◽  
Bo Rong Wu ◽  
Ding Wen Mao

Activated carbon (AC)/polyaniline (PANI) composite electrode materials were synthesized in this article. The effect of preparation such as BET surface area and porous size of AC on the electrochemical performances of AC/PANI composite material was investigated. The electrochemical performances of the composite were tested with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectrometry in 6mol/L KOH solution using Hg/HgO as reference electrode. Composite surface morphology was examined by scanning electron microscope (SEM). The result shows that when the ratio of AC to aniline increases, the conversion of aniline and the capacitance value of composite also increase in keeping the ratio of AC to aniline constant. When AC: aniline : (NH4)2S2O8 =7:1:1, the conversion of aniline up to more than 95% and the capacitance value of electrode materials increased from 239F/g(pure AC) to 409F/g, which is 71.1% higher than pure AC. Pore structure of AC also has great effect on electrochemical performances of electrode material. With the increase of proportion of mesoporous, the electrochemical properties of composite are greatly increased.


2013 ◽  
Vol 302 ◽  
pp. 158-164 ◽  
Author(s):  
Ya Jie Li ◽  
Xing Yuan Ni ◽  
Jun Shen ◽  
Dong Liu ◽  
Nian Ping Liu

The electrochemical performances of resorcinol–formaldehyde-based carbon aerogels can be significantly enhanced by nitric acid activation.FT-IR spectra and SEM images reveal the constitution and morphology of samples .The electrochemical performances of materials were tested by cyclic voltammetry,galvanostatic charge/discharge test ,electrochemical impedance spectroscopy and cyclic test. The results show that activation does not influence the molecular structure of carbon aerogels,which maintains their nano-porous structure. Activation increases the specific capacitance by 50% and improves the conductivity of carbon aerogels,resulting in fenfect cycling stability. So nitric acid activated carbon aerogels is an ideal electrode material for supercapacitors.


2011 ◽  
Vol 197-198 ◽  
pp. 1053-1056
Author(s):  
Yan Hong Tian ◽  
Xue Jun Zhang ◽  
Yu Zhao

Two types of supercapacitor electrode materials have been synthesized: AC/PANI, activated carbon composites polyaniline by in-situ polymerization of aniline on the surface of activated carbon, and Ni-AC/PANI, the AC/PANI composite dopes with nickel. The microstructure of composites has been examined by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FI-IR) has been used to determine the molecular structure and chemical bond of the composites. The nickel content has been measured by atomic absorption spectrometry (AAS). The electrochemical performance of the composite has been characterized by cyclic voltammery and galvanostatic charge-discharge in 6mol•L-1 KOH solution using Hg/HgO as reference electrode. Due to the doping of nickel salt, Ni-AC/PANI shows desired microstructure, good high-current charge-discharge performance and good electrochemical behavior with an capacitance of 535F•g-1, 38.2% higher than that of AC/PANI.


2011 ◽  
Vol 347-353 ◽  
pp. 3400-3403
Author(s):  
Yang Li ◽  
Ming Xian Liu ◽  
Li Hua Gan ◽  
Liang Yang ◽  
Zi Jie Xu ◽  
...  

In this paper, we demonstrated the synthesis and electrochemical properties of carbon foams for use as supercapacitor electrode materials. Carbon foams were prepared by double templating method in which emulsion and nanosilica were used as soft template and hard template, respectively. By using Span 80 and Tween 80 as emulsifiers, resorcinol/formaldehyde aqueous solution which contained nanosilica as aqueous phase and 1iquid paraffin as oil phase, an O/W emulsion was obtained. Carbon foams were obtained by emulsion polymerization, carbonization and the subsequent removal of the hard template. The as-prepared carbon foams were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analyzer, and electrochemical workstation. The results indicate that the resultant carbon foams have specific surface area of 160 m2/g, total pore volume of 0.15 cm3/g and possess dual pore size distributions with macropore sizes of 0.5-2.0 μm and the most probable pore size of 4.1 nm. The electrochemical properties of the carbon foams have been investigated by cyclic voltammetry (CV) and galvanostatic charge- discharge with a three-electrode system in electrolyte of 6 mol/L KOH solution. The CV curves of the carbon foams show rectangular-like shape without obvious oxidation-reduction evolution peak, which suggests a typical nonfaradic adsorption/desorption reaction. The carbon foams present linear galvanostatic charge-discharge curve under the current densities of 1.0-5.0 A/g and their specific capacitance values are 60-90 F/g. The good electrochemical performances of carbon foams would provide candidate as electrode materials for supercapacitors.


2013 ◽  
Vol 724-725 ◽  
pp. 1075-1078
Author(s):  
Zhong Yuan Cheng ◽  
Fu Xin Zhong ◽  
Ying Jiang ◽  
Peng Fei Yu ◽  
Yun Xia Jin ◽  
...  

Olivine structured LiFePO4 are prepared by sol-gel method from FePO4·H2O nanocrystallites, which are synthesized via in situ polymerization restriction technique. These composites are fully characterized using XRD, SEM, and the electrochemical performances have been shown by the charge/discharge capacity, rate property and cycle performance. The synthesized LiFePO4 samples show well-crystallized structures. Among those samples, the sample synthesized at 650°C presents the highest discharge capacity of 165.8 mAhg-1 at 0.2 C. This compares with a theoretical discharge capacity of 170 mAhg-1.


2021 ◽  
Author(s):  
Kyu Seok Lee ◽  
Ye Ji Seo ◽  
Hyeon Taek Jeong

AbstractIn this report, we incorporate activated carbon (AC) onto aluminum substrate via doctor blade method to produce an all-solid-state supercapacitor. The electrochemical properties of the all-solid-state supercapacitor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Galvanostatic charge/discharge tests also were carried out to exhibit stability of the AC-based supercapacitor. The impedance and charge/discharge curves of the all-solid-state supercapacitor showed good capacitive behavior after functionalized AC. The highest specific capacitance obtained for the AC-based supercapacitor was 106 F g−1. About 160% of specific capacitance increased after functionalization of the AC, which indicated that modification of the AC by nitric acid was able to introduce functional groups on the AC and improve its electrochemical performances.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 392 ◽  
Author(s):  
Kannadasan Thiagarajan ◽  
Thirugnanam Bavani ◽  
Prabhakarn Arunachalam ◽  
Seung Jun Lee ◽  
Jayaraman Theerthagiri ◽  
...  

NiMoO4/g-C3N4 was fabricated by a hydrothermal method and used as an electrode material in a supercapacitor. The samples were characterized by XRD, FTIR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to study the physical and structural properties of the as-prepared NiMoO4/g-C3N4 material. The electrochemical responses of pristine NiMoO4 and the NiMoO4/g-C3N4 nanocomposite material were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). From the CD studies, the NiMoO4/g-C3N4 nanocomposite revealed a higher maximum specific capacitance (510 Fg−1) in comparison to pristine NiMoO4 (203 Fg−1). In addition, the NiMoO4/g-C3N4 composite electrode material exhibited high stability, which maintained up to 91.8% capacity even after 2000 charge-discharge cycles. Finally, NiMoO4/g-C3N4 was found to exhibit an energy density value of 11.3 Whkg−1. These findings clearly suggested that NiMoO4/g-C3N4 could be a suitable electrode material for electrochemical capacitors.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yanfang Li ◽  
Zhenyin Hai ◽  
Xiaojuan Hou ◽  
Hongyan Xu ◽  
Zengxing Zhang ◽  
...  

Three-dimensional (3D) fennel-like cobalt oxide (II, III) (Co3O4) particles with thirty-six surfaces on nickel foams were prepared via a simple hydrothermal synthesis method and its growth process was also researched. The crystalline structure and morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Brunauer-Emmett-Teller (BET) analysis revealed that 3D fennel-like Co3O4 particles have high specific surface area. Therefore, the special structure with thirty-six surfaces indicates the good electrochemical performance of the micron-nanometer material as electrode material for supercapacitors. The cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were conducted to evaluate the electrochemical performances. Compared with other morphological materials of the similar sizes, the Co3O4 particles on nickel foam exhibit a high specific capacitance of 384.375 F·g−1 at the current density of 3 A·g−1 and excellent cycling stability of a capacitance retention of 96.54% after 1500 galvanostatic charge-discharge cycles in 6 M potassium hydroxide (KOH) electrolyte.


Sign in / Sign up

Export Citation Format

Share Document