Microwave Involved Synthesis of Graphene/Polyaniline Nanocomposite with Superior Electrochemical Performance

2017 ◽  
Vol 46 ◽  
pp. 212-224 ◽  
Author(s):  
Han Xun Qiu ◽  
Xue Bing Han ◽  
Jing Li ◽  
Fei Long Qiu ◽  
Jun He Yang

A microwave irradiation involved process was applied to fabrication of graphene/polyaniline nanocomposite via in-situ polymerization of aniline monomers on graphene sheets. Structure and morphology of composites were characterized through scanning electron microscopy, Raman spectra, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectra. Electrochemical performances for energy storage applications were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements. Owing to the homogeneous coating of polyanilline on the large surface of graphene, graphene/polyaniline composite-based electrode exhibits remarkably enhanced capacitive behavior with a specific capacitance of 429 F/g at 0.2 A g-1, a good cyclic stability and an excellent conducting behavior, which are much superior to those of individual components of composites. The improved electrochemical behavior of the composite resulting from the irradiation of microwave suggests the promising potentials for supercapacitors.

2013 ◽  
Vol 724-725 ◽  
pp. 844-847
Author(s):  
Ying Jiang ◽  
Fu Xin Zhong ◽  
Zhong Yuan Cheng ◽  
Peng Fei Yu ◽  
Yun Xia Jin ◽  
...  

The LiFePO4/C cathode material was synthesized by two–step addition of dual carbon sources method based on the in situ polymerization method combining with two–step sintering process. In this study, the structure and morphology have been studied systematically by X–ray diffraction (XRD) and scanning electron microscope (SEM).The electrochemical performances have been shown by the charge/discharge capacity, rate property, cycle performance. It was evidenced that the two–step addition of dual carbon sources had remarkable advantages, including the more complete coating carbon, and the improvement in the electrochemical performance of LiFePO4/C.


2011 ◽  
Vol 239-242 ◽  
pp. 513-516
Author(s):  
Feng Ge Gao ◽  
Yan Hong Tian ◽  
Xue Jun Zhang

Polythionphene (PTH)/polyaniline (PANI)/activated carbon (AC) composites as electrode materials for supercapacitors were synthesized by in-situ polymerization of thionphene on PANI/AC. The surface morphology and the molecular structure of the composites were examined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical performances were tested by cyclic voltammetry, Galvanostatic charge-discharge and electrochemical impedance spectrometry. Results show that the PTH/PANI/AC composites exhibit better large current charge-discharge performance and higher capacitance than those of PANI/AC. The capacitance value of the composites would reach 597.4 F/g. The PTH/PANI/AC composites also have better cycle stability than that of PANI/AC.


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850030 ◽  
Author(s):  
Jujie Luo ◽  
Xing Yang ◽  
Shumin Wang ◽  
Yuhong Bi ◽  
Amit Nautiyal ◽  
...  

The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2[Formula: see text]F/g at 1[Formula: see text]A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.


2015 ◽  
Vol 88 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Rouhollah Bagheri ◽  
Reza Darvishi

ABSTRACT In this study, polyurethane (PU)/organomodified montmorillonite (cloisite®30B) is synthesized via in situ polymerization by reaction of an ether-based prepolymer with the isocyanate end groups and adiamine chain extender (4, 4-methylene-bis(2-chloroaniline)) in the presence of different amounts of nanoparticles dispersed in the prepolymer matrix by an ultrasonic mixer for 1 h. The synthesized polymers are cast on a pretreated carbon steel sheet and cured at 120 °C in an oven. The PU and its composites have been characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and mechanical testing. The XRD analysis of the cured samples containing 1 to 3 wt% cloisite30B showed intercalation segments in the silicate layers and exfoliation for 0.5 wt% nanoparticles. The highest mechanical properties were obtained using the cured exfoliated silicate layer sample. A twofold increase in the ultimate tensile strength and a 2.3 times increase in the adhesion strength were found for 0.5 wt% organoclay/PU as compared with that of pure PU. In addition, the exfoliated structure sample exhibited a 16% reduction in abrasion compared with that of pure PU.


2014 ◽  
Vol 904 ◽  
pp. 150-154
Author(s):  
Zhe Wei Yang ◽  
Xin Fan ◽  
Li Ang Guo ◽  
Wei Ting Wei

The graphene oxide/Fe3O4 composites were prepared by in situ precipitation method in this article. The microstructure and surface morphology of composites were characterized by Fourier transform infrared spectrum, X-ray diffraction and scanning electron microscopy, respectively. Cyclic voltammetry was employed for the determination of specific capacitance and other electrochemical performances. It was shown that there was the chemical bonding force between GO and Fe3O4 particles. And the surfaces of GO were wrapped by the Fe3O4 particles precipitated on the surfaces of GO sheets and no impurities were detected. Furthermore, the specific capacitance of GO/Fe3O4 composite electrodes decreased as Fe3O4 particles reduced and the redox peaks became weaker owing to the addition of nonconductive Fe3O4 particles.


2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2011 ◽  
Vol 01 (03) ◽  
pp. 357-362 ◽  
Author(s):  
G. D. PRASANNA ◽  
H. S. JAYANNA

The polyaniline (PANI)/ CoFe2O4 nanocomposites were prepared by an In Situ polymerization of aniline in an aqueous solution. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum,thermogravimetric analysis (TGA) and scanning electron micrograph (SEM). The AC conductivity and dielectric properties of these composites were investigated in the frequency range 1 kHz–10 MHz at room temperature. The AC conductivity was found to be constant up to 1 MHz and thereafter it increases steeply and it was observed maximum for the PANI with 60 wt% of CoFe2O4 nanocomposite. At lower frequencies the values of dielectric constant is maximum for pure CoFe2O4 nanoparticles.


2012 ◽  
Vol 625 ◽  
pp. 251-254 ◽  
Author(s):  
Gui Yang Liu ◽  
Bao Sen Wang ◽  
Ying He ◽  
Jun Ming Guo

In this paper, LiNixMn2−xO4 materials were prepared by solution combustion synthesis method using acetic salts as raw materials and acetic acid as fuel. The phase structures are characterized by X-ray diffraction (XRD). Electrochemical performances of the materials are investigated by galvanostatic charge/discharge methods. XRD results revealed that the main phase of the products with increasing Ni3+ content is LiMn2O4, and there is a trace amount of Mn3O4 found in the product with Ni3+ content of 0.05. Electrochemical experiments showed that the capacity and the cyclability of the LiNixMn2−xO4 materials decrease with increasing Ni3+ content. Ni3+ doping has no significantly improvement for the capacity and the cyclability of the LiMn2O4 spinel.


Sign in / Sign up

Export Citation Format

Share Document