scholarly journals Nanofiber NiMoO4/g-C3N4 Composite Electrode Materials for Redox Supercapacitor Applications

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 392 ◽  
Author(s):  
Kannadasan Thiagarajan ◽  
Thirugnanam Bavani ◽  
Prabhakarn Arunachalam ◽  
Seung Jun Lee ◽  
Jayaraman Theerthagiri ◽  
...  

NiMoO4/g-C3N4 was fabricated by a hydrothermal method and used as an electrode material in a supercapacitor. The samples were characterized by XRD, FTIR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to study the physical and structural properties of the as-prepared NiMoO4/g-C3N4 material. The electrochemical responses of pristine NiMoO4 and the NiMoO4/g-C3N4 nanocomposite material were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). From the CD studies, the NiMoO4/g-C3N4 nanocomposite revealed a higher maximum specific capacitance (510 Fg−1) in comparison to pristine NiMoO4 (203 Fg−1). In addition, the NiMoO4/g-C3N4 composite electrode material exhibited high stability, which maintained up to 91.8% capacity even after 2000 charge-discharge cycles. Finally, NiMoO4/g-C3N4 was found to exhibit an energy density value of 11.3 Whkg−1. These findings clearly suggested that NiMoO4/g-C3N4 could be a suitable electrode material for electrochemical capacitors.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2195
Author(s):  
Kannadasan Thiagarajan ◽  
Dhandapani Balaji ◽  
Jagannathan Madhavan ◽  
Jayaraman Theerthagiri ◽  
Seung Jun Lee ◽  
...  

In the present study, the synthesis of CoWO4 (CWO)–Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO–Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO–Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO–Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO–Ni3 exhibited the highest specific capacitance of 271 F g−1 at 1 A g−1, which was greater than that of bare CWO (128 F g−1). Moreover, the CWO–Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO–Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950064 ◽  
Author(s):  
P. Anandhi ◽  
V. Jawahar Senthil Kumar ◽  
S. Harikrishnan

This paper investigates the synthesis and enhanced electrochemical behaviors of ZnO and NiO/ZnO nanocomposites for electrode material of supercapacitors. ZnO and NiO/ZnO nanocomposites were produced via sol–gel technique. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) were used to determine the size and structure of as-synthesized nanomaterials, respectively. The capacitive behavior and charge–discharge characteristics of the electrode using ZnO and NiO/ZnO nanocomposites (as active material) were individually probed with the help of cyclic voltammetry (CV) and galvanostatic charge-discharge tests, respectively. The specific capacitance of nanocomposites-based electrode calculated from galvanostatic charge-discharge tests was 469[Formula: see text]F [Formula: see text] at the scan rate of 1[Formula: see text]mA [Formula: see text] in 1M Na2SO4 electrolyte. The power density and energy density at the current density of 1[Formula: see text]mA [Formula: see text] were determined as 1458.33[Formula: see text]W [Formula: see text] and 91.14[Formula: see text]Wh[Formula: see text][Formula: see text], respectively. Hence, NiO/ZnO nanocomposites could be reckoned to be a promising electrode material for supercapacitor while comparing to ZnO-based electrode material.


2021 ◽  
Vol 3 ◽  
Author(s):  
Subash Pandey ◽  
Shova Neupane ◽  
Dipak Kumar Gupta ◽  
Anju Kumari Das ◽  
Nabin Karki ◽  
...  

In this study, we report on a combined approach to preparing an active electrode material for supercapattery application by making nanocomposites of Polyaniline/Cerium (PANI/Ce) with different weight percentages of magnetite (Fe3O4). Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses supported the interaction of PANI with Ce and the formation of the successful nanocomposite with magnetite nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed the uniform and porous morphology of the composites. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) were used to test the supercapattery behavior of the nanocomposite electrodes in 1.0 M H2SO4. It was found that the supercapattery electrode of PANI/Ce+7 wt.% Fe3O4 exhibited a specific capacity of 171 mAhg−1 in the potential range of −0.2 to 1.0 V at the current density of 2.5 Ag−1. Moreover, PANI/Ce+7 wt.% Fe3O4 revealed a power density of 376.6 Wkg−1 along with a maximum energy density of 25.4 Whkg−1 at 2.5 Ag−1. Further, the cyclic stability of PANI/Ce+7 wt.% Fe3O4 was found to be 96.0% after 5,000 cycles. The obtained results suggested that the PANI/Ce+Fe3O4 nanocomposite could be a promising electrode material candidate for high-performance supercapattery applications.


2010 ◽  
Vol 97-101 ◽  
pp. 1582-1585 ◽  
Author(s):  
Yan Hong Tian ◽  
Bo Rong Wu ◽  
Ding Wen Mao

Activated carbon (AC)/polyaniline (PANI) composite electrode materials were synthesized in this article. The effect of preparation such as BET surface area and porous size of AC on the electrochemical performances of AC/PANI composite material was investigated. The electrochemical performances of the composite were tested with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectrometry in 6mol/L KOH solution using Hg/HgO as reference electrode. Composite surface morphology was examined by scanning electron microscope (SEM). The result shows that when the ratio of AC to aniline increases, the conversion of aniline and the capacitance value of composite also increase in keeping the ratio of AC to aniline constant. When AC: aniline : (NH4)2S2O8 =7:1:1, the conversion of aniline up to more than 95% and the capacitance value of electrode materials increased from 239F/g(pure AC) to 409F/g, which is 71.1% higher than pure AC. Pore structure of AC also has great effect on electrochemical performances of electrode material. With the increase of proportion of mesoporous, the electrochemical properties of composite are greatly increased.


2020 ◽  
Vol 20 (8) ◽  
pp. 4854-4859 ◽  
Author(s):  
Lei Chen ◽  
Xu Chen ◽  
Yaqiong Wen ◽  
Bixia Wang ◽  
Yangchen Wu ◽  
...  

Nitrogen-enriched reduced graphene oxide electrode material can be successfully prepared through a simple hydrothermal method. The morphology and microstructure of ready to use electrode material is measured by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Physical characterizations revealed that nitrogen-enriched reduced graphene oxide electrode material possessed high specific surface area of 429.6 m2 · g−1, resulting in high utilization of electrode materials with electrolyte. Electrochemical performance of nitrogen-enriched reduced graphene oxide electrode was also investigated by cyclic voltammetry (CV), galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS) in aqueous in 6 M KOH with a three-electrode system, which displayed a high specific capacitance about 223.5 F · g−1 at 1 mV · s−1. More importantly, nitrogenenriched reduced graphene oxide electrode exhibited outstanding stability with 100% coulombic efficiency and with no specific capacitance loss under 2 A · g−1 after 10000 cycles. The supercapacitive behaviors indicated that nitrogen-enriched reduced graphene oxide can be a used as a promising electrode for high-performance super-capacitors.


2012 ◽  
Vol 190-191 ◽  
pp. 528-533
Author(s):  
Miao Sun ◽  
Wei Wang ◽  
Ben Lin He ◽  
Ming Liang Sun ◽  
Fan Sun ◽  
...  

Poly-2, 5-dimethoxyaniline (PDMA) coating was successfully prepared by electrochemical method on the surface of active carbon (AC) electrodes in oxalic acid aqueous solution. The resulted coating was hydrolyzed to produce poly-2,5-dihydroxyaniline (PDHA) to enhance the capacitance of the composite electrode. Scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge test, and electrochemical impedance spectroscopy (EIS) were used to investigate the properties of these electrodes. A comparative analysis on the electrochemical properties of bare-carbon electrode was also conducted under similar conditions. The specific capacitance of the PDHA/AC composite electrode was 947.04 F•g-1 between 0.0 and 1.0 V at a current density of 3.0 mA•cm-2 in 0.5 M H2SO4 electrolyte. The capacitance retention of composite electrode was about 89.2% during 700 charge-discharge cycles.


2006 ◽  
Vol 301 ◽  
pp. 139-142 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Kenichi Sugimoto ◽  
Shinichi Tobishima

Composite electrode material of crystalline b-FeOOH and carbon was prepared by hydrolyzing of FeCl3 (aq.) in which carbon powder with various specific surface areas was dispersed. Composite electrode material of b-FeOOH fine particles and Ketjen black (KB:specific surface area 1270 m2 g-1) of high specific surface area exhibited the high capacity over 250 mAh g-1 per b-FeOOH weight and good cycle performances at rapid charge-discharge current density over 5 mA cm-2 (ca. 5.0 A g-1 per b-FeOOH weight) in nonaqueous electrolytes including lithium ions. Composite electrode materials of crystalline b-FeOOH and carbon are one of the promising candidates as electrode materials for energy storage devices that high-power operations are required.


2012 ◽  
Vol 722 ◽  
pp. 25-30
Author(s):  
Su Yan Qiao ◽  
Li Zhen Fan

Polyaniline (PANI) and ordered macroporous carbon (C80) composites were prepared via a simple and speedy polymerization of aniline in the presence of C80. The effect of PANI content on the electrochemical properties was studied in detail. The morphologies were manifested through field emission scanning electron microscopy (FE-SEM), and the electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and impedance in 1 mol/L H2SO4. The results indicate that the polymerization of aniline occurred in the pores of carbon, and as the aniline content increased, more polyaniline was synthesized in the pores. When the PANI content was 43 wt%, the specific capacitance of the composite was as high as 368.7 F/g at a current density of 0.06 A/g, which was 2.6 times higher than that of the host C80 (140 F/g).


2020 ◽  
Vol 32 (8) ◽  
pp. 2013-2020 ◽  
Author(s):  
V.V. Deshmukh ◽  
H.P. Nagaswarupa ◽  
C.R. Ravikumar ◽  
M.R. Anil Kumar ◽  
T.R. Shashi Shekhar ◽  
...  

We report the synthesis of lanthanum doped strontium titanate (Sr1-xLaxTiO3,x=0.1) by sol-gel method. The physical properties of the as-synthesized sample were systematically studied through X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDAX). Diffraction peaks in XRD supported the cubic formation of perovskite-type crystal structure. The image analysis of nanomaterial by SEM and TEM techniques disclosed aggregates of nanoparticles with grain size about 20 nm. The study by UV-DRS exposed the band energy gaps (Eg) of 3.4 eV for strontium titanate nanoparticles, respectively. The degradation studies for three days were carried out for three dyes. Malachite green and rhodamine blue, strontium titanate nanoparticles showed utmost photocatalytic activity for rhodamine blue under UV light irradiation (from 0 to 80 min) as compared to malachite green. Properties of electrochemistry were looked into by cyclic voltammetry and galvanostatic charge/discharge in 1M KCl electrolyte. The Sr0.9La0.1TiO3 electrode displayed maximal specific capacitance of 306.74 F g-1 at current 1mA from galvanostatic charge-discharge curve. The rare earth doped perovskite Sr0.9La0.1TiO3 nanomaterial exhibited increased surface area with superior supercapacitance property.


2015 ◽  
Vol 33 ◽  
pp. 137-149
Author(s):  
Ayyavu Venkateswari ◽  
S. Kumaran ◽  
C. Nithya

Nanostructured Mg2Ni intermetallic compounds were synthesised by high energy ball milling. Effect of milling time on structure and surface morphology of milled powders were studied using X-ray diffraction and scanning electron microscopy. Crystallite size and degree of crystallinity were confirmed using transmission electron microscopy and selective area electron diffraction analysis. In order to understand the effect of milling time on reaction rates, Differential Thermal Analysis is performed. Thermal profiles of 30 h milled powders indicate lower activation energy. Cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge studies were carried out to understand the electrochemical performance of prepared electrode materials. 30 h milled electrode material delivers maximum discharge capacity with superior capacity retention after 20 cycles at 20 mA g-1.


Sign in / Sign up

Export Citation Format

Share Document