Research on Method of Confirming Typical SWMM Water Quality Parameters

2011 ◽  
Vol 243-249 ◽  
pp. 5308-5313 ◽  
Author(s):  
Hai Yan Li ◽  
Li Tao Yue

Taking a roof in Shanghai for example, through the comparison of the relationship of rainfall and SS load in a single rainfall runoff obtained by experiment and SWMM simulation, typical water SWMM model parameters (maximum buildup possible C1, buildup rate constant C2, washoff coefficient S1 and washoff exponent S2) could be obtained. With this method, other cities’ water quality parameters for SWMM simulation could be confirmed, so as to provide basis for simulating water quality by SWMM.

Author(s):  
M. K. M. R. Guerrero ◽  
J. A. M. Vivar ◽  
R. V. Ramos ◽  
A. M. Tamondong

Abstract. The sensitivity to changes in water quality inherent to seagrass communities makes them vital for determining the overall health of the coastal ecosystem. Numerous efforts including community-based coastal resource management, conservation and rehabilitation plans are currently undertaken to protect these marine species. In this study, the relationship of water quality parameters, specifically chlorophyll-a (chl-a) and turbidity, with seagrass percent cover is assessed quantitatively. Support Vector Machine, a pixel-based image classification method, is applied to determine seagrass and non-seagrass areas from the orthomosaic which yielded a 91.0369% accuracy. In-situ measurements of chl-a and turbidity are acquired using an infinity-CLW water quality sensor. Geostatistical techniques are utilized in this study to determine accurate surfaces for chl-a and turbidity. In two hundred interpolation tests for both chl-a and turbidity, Simple Kriging (Gaussian-model type and Smooth- neighborhood type) performs best with Mean Prediction equal to −0.1371 FTU and 0.0061 μg/L, Root Mean Square Standardized error equal to −0.0688 FTU and −0.0048 μg/L, RMS error of 8.7699 FTU and 1.8006 μg/L and Average Standard Error equal to 10.8360 FTU and 1.6726 μg/L. Zones are determined using fishnet tool and Moran’s I to calculate for the seagrass percent cover. Ordinary Least Squares (OLS) is used as a regression analysis to quantify the relationship of seagrass percent cover and water quality parameters. The regression analysis result indicates that turbidity has an inverse relationship while chlorophyll-a has a direct relationship with seagrass percent cover.


2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
René Rodríguez-Grimón ◽  
Nestor Hernando Campos ◽  
Ítalo Braga Castro

Since 2013, there has been an increase (>23%) in naval traffic using maritime routes and ports on the coastal fringe of Santa Marta, Colombia. Of major concern, and described by several studies, is the relationship between maritime traffic and coastal contamination. This study proposed a maritime traffic indicator considering the simultaneous effects of several relevant measurements of water quality parameters to estimate the impact of naval activity. The approach involved developing a model including the number of vessels, hull length, and permanence time in berths. In addition, water quality variables, considering climatic seasons, were used to verify association with maritime traffic and touristic activities. The high concentrations of total coliforms (TC) and dissolved/dispersed petroleum hydrocarbons in chrysene equivalents (DDPH) reported by the International Marina of Santa Marta (SM) were affected by the local anthropic activities, including tourism, naval traffic, and urban wastewater discharges. Moreover, our results suggest the occurrence of multiple chemical impacts within Tayrona National Natural Park (PNNT) affecting conservation goals. The estimation of the maritime traffic indicator proposed in this study may be an easy and more complete tool for future studies evaluating the impact of naval activities on environmental quality.


2018 ◽  
Vol 59 (1) ◽  
pp. 97 ◽  
Author(s):  
Karam Ashmawy ◽  
Fatma Hiekal ◽  
Somaia AboAkadda ◽  
Nadia Laban

Author(s):  
Yuyan Liu ◽  
Fangfang Ding ◽  
Caiye Ji ◽  
Dan Wu ◽  
Lin Wang ◽  
...  

Abstract Palladium (Pd) is widely used in vehicle exhaust catalysts (VECs) to reduce toxic emissions from motor vehicles. The study aimed to quantitatively determine Pd content and water quality parameters, to analyze the variation differences and to explore the effect of water quality parameters on Pd content in the urban water environment system (wet deposition–rainfall runoff–receiving water body–estuary) of the city of Haikou, Hainan Island, China. The method used in this study included microwave digestion under high pressure and temperature, analysis by inductively coupled plasma mass spectrometry, quality control of the experimental procedure and guaranteed recovery (85% −125%). The results showed that the dissolved Pd average content in the urban water environment system was the highest in rainfall runoff (4.93 ng/L), followed by that in the receiving water body (4.56 ng/L), and it was the lowest in wet deposition (0.1 ng/L). The suspended Pd average content was the highest in the estuary (2.83 ng/L), followed by that in rainfall runoff (1.26 ng/L), and it was the lowest in wet deposition (6 × 10−4 ng/L). The particle–water partition ratio of the estuary Pd was the highest (1.26), followed by that of Pd in rainfall runoff (0.26). The particle–water partition ratio of the wet deposition Pd was the lowest (6 × 10−3). The dissolved Pd was correlated with the pH, Cl−, and total suspended solids (TSS) (correlation coefficient = 0.52, −0.68, 0.39, p < 0.05; regression coefficient = 1.27, −1.39, 0.01). The suspended Pd was only correlated with Cl− and TSS (correlation coefficient = −0.36, 0.76, p < 0.05; regression coefficient = −1.45, 0.01). Cl− and TSS were the most closely related to Pd in the water environment system. Although individual factors such as pH, Cl−, and TSS had certain migration and transformation effects on Pd in the wet deposition–rainfall runoff–receiving water body–estuary system, the probability of strong correlations was not high. In particular, Eh was not related to the dissolved nor suspended Pd content (correlation coefficient = 0.14, 0.13), which may be due to the synergistic effect of the multiple physical factors on Pd. This study was helpful to better understand the environmental behavior of Pd and provided important theoretical support for the prevention and protection against urban water environmental pollution.


2021 ◽  
Vol 12 (1) ◽  
pp. 18-28
Author(s):  
Heri Ariadi ◽  
Abdul Wafi ◽  
Muhammad Musa ◽  
Supriatna Supriatna

Water quality parameters play an important role in intensive pond ecosystems. The purpose of this study was to determine the relationship between of water quality parameters in intensive shrimp farming of L. vannamei. This research was carried out for 95 days of intensive shrimp farming in PT. Menjangan Mas Nusantara Company, Banten, with the physical, chemical, and microbiological parameters of water as the main reference object of observation. The results showed that during the shrimp culture period the pond water quality parameter concentration was considered to be quite optimal with a stable fluctuation trend, except for the salinity and TOM parameters whose values ​​were above the water quality standard. Correlation test results state that between the physical chemical parameters have a strong and heterogeneous relationship, with the strongest parameters of pH, phosphate, nitrite, and TOM. As for the microbiological variables, the correlation of physical chemistry parameters of water is considered to be very weak, because from the correlation test results, only DO parameters showed the correlation with microbiological parameters. The conclusion of this study, that during intensive shrimp culture period, the physical and chemical parameters of water have a strong correlation of association between one another and the highest are pH, phosphate, nitrite, and TOM, but only dissolved oxygen parameters that show the relationship correlation with microbiological parameters.


2013 ◽  
Vol 448-453 ◽  
pp. 902-907
Author(s):  
Shih Chieh Chen ◽  
Chao Cheng Chung ◽  
Wen Liang Lai ◽  
Chung Yi Chung ◽  
Hwa Sheng Gau ◽  
...  

In this study, we use canonical correlation analysis to interpret the relationship between water quality parameters (T, Alk, Cl, EC, TN, TP, UV-254, pH, HPC, DO) and primary productivity parameters (algae and chlorophyll-a). In these two sets of constructed canonical variables, the water quality parameters can account for 39.25% of the total variance of primary productivity. The majority of the explanatory power is from the first set of canonical variables, which has a correlation coefficient of 0.84. The main factors that control chlorophyll-a are HPC, Alk, T, TN, and pH.


2009 ◽  
Vol 59 (2) ◽  
pp. 331-338 ◽  
Author(s):  
J. S. Han ◽  
C. G. Kim

Because of increasing demanding for development of direct ecological landfill monitoring methods, there is a requirement for the condition of landfills and their influence on the environment to be characterized by the behavior of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of the specific genes of representative bacteria and encoding enzymes were quantified by real-time PCR. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR gene and BOD was greater than 0.8 while NSR gene and nitrate were related more than 0.9. For MTOT, it was at the highest related at 100% over BOD/COD and Dde genes were correlated over 0.8. In addition, anaerobic genes and DO were also related more than 0.8, showing anaerobic reactions generally dependent upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.


Sign in / Sign up

Export Citation Format

Share Document