The Seismic Behavior Analysis of the Light-Duty Steel Structure Residence System

2011 ◽  
Vol 243-249 ◽  
pp. 656-661
Author(s):  
Bin Xu ◽  
Yong Yao ◽  
Yong Jun Deng ◽  
Yue Chen ◽  
Dai Guo Chen

The light-duty steel structure residential demonstration project is analyzed by mode-superposition response spectrum method, the elastic and elastic-plastic time-history analysis, push-over analysis, which used the finite element software ETABS and PKPM. The safety is assessed. The seismic behavior of this structural system is analyzed under different site classification, design characteristic and seismic intensity, and is compared with the ordinary steel structure, concrete structure, masonry structure. The results show that, this structural system can meet the current codes under frequent and rare earthquake action. But the column has a surplus stable stress values. And it is suitable for application in large areas in China. In high intensity areas and compared with the different structure system, it shows that the lateral has the main effect on this structure.

2011 ◽  
Vol 250-253 ◽  
pp. 3305-3308
Author(s):  
Yong Yao ◽  
Yun Peng Chu ◽  
Li Wang ◽  
Rui Zhao

Cold-formed steel structure is suitable for post-earthquake reconstruction since its good seismic performance and construction speed. Analyzing the dynamic characteristic of a two story office building by using the finite element software ANSYS. And the results show that: (1) in the time history analysis based on three types of seismic waves the lateral displacement of the structure and rotation between layers to meet the relevant specifications when confront the rare earthquake (2) Under the seismic loads, earthquake response acceleration amplification factor is smaller which indicating better seismic performance and it can be used in areas with high seismic intensity.


2015 ◽  
Vol 724 ◽  
pp. 353-357
Author(s):  
Jian Zhu ◽  
Ping Tan ◽  
Pei Ju Chang

This study focus on derivation of such vulnerability curves using Fiber Reinforced Polymers technologies retrofitted conventional RC industrial frames with masonry infill wall. A set of stochastic earthquake waves which compatible with the response spectrum of China seismic code are created. Dynamic time history analysis is used to compute the random sample of structures. Stochastic damage scatter diagrams based different seismic intensity index are obtained. Seismic vulnerability of FRP-reinforced RC industrial frames is lower than unreinforced frames obviously, and seismic capability of frames using FRP technologies is enhanced especially under major earthquake.


2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940003 ◽  
Author(s):  
Xiaoyan Yang ◽  
Jing Wu ◽  
Jian Zhang ◽  
Yulong Feng

A novel structural wall with hinge support and buckling restrained braces (BRBs) set in the base (HWBB) is studied. HWBB can be applied to precast manufacturing due to its considerable ductility and the separate loading mechanism in HWBB–frame structure. In elastic stage, BRBs play a brace role to make the hinged wall resist horizontal forces like a shear wall. BRBs dissipate seismic energy through plastic and hysteresis effects after yielding and the damage is only concentrated in BRBs. The performance of an HWBB is equivalent to a shear wall structure with excellent ductility and stable energy dissipation capacity. Numerical analysis indicates that the hinged wall body in the HWBB well controls the deformation mode of the structure, avoiding the concentration of story drifts, thereby protecting the remaining parts of the structure. It is revealed that the moments of the wall body will generate significant increments after BRBs yielding, and the Seismic Intensity Superposition Method is proposed to calculate the moments. In this method, nonlinear response of an HWBB can be regarded as the sum of the responses of two elastic corresponding structures excited with two parts of the seismic intensity, respectively. Modes and moments equations of the hinged wall with uniform distribution of stiffness and mass are derived, and calculation results coincide with that of the nonlinear time history analysis (NHA). For a more general case, the white noise scan method is proposed to solve the structure’s natural characteristics and to further calculate the response. Finally, the post-yielding moment calculation method and the process based on design response spectrum are proposed. It is proved that the moments from proposed Seismic Intensity Superposition Method can envelop most of the moments from NHA, and it is a good estimate of the response of HWBB in nonlinear stage.


2013 ◽  
Vol 739 ◽  
pp. 309-313 ◽  
Author(s):  
Pei Ju Chang

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. This study focus on derivation of such fragility curves using conventional industrial frames with masonry infill wall. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. MIRS seismic capability of longitudinal and transversal orientation is different. Stochastic damage scatter diagrams based different seismic intensity index are obtained. Seismic fragility of longitudinal axis (Y axis) is larger than transversal axis (X axis) of frames under major earthquake obviously.


2014 ◽  
Vol 578-579 ◽  
pp. 137-140
Author(s):  
Ri Rong Fu ◽  
Lan Wen Li ◽  
Xin Yan Yuan ◽  
Kang Ning Liu ◽  
Ran Li

This paper aimed at a tall frame-shear wall structure contains multi-short columns, and did pushover analysis to this structure with finite element software, and evaluated its seismic performance under rare earthquake in seismic intensity of 6 degrees. It concluded that the structure can meet the "earthquake does not fall" seismic requirements, and will not appear the cut destruction of shear frame short columns, and can achieve "strong column weak beam" design requirements.


2015 ◽  
Vol 22 (s1) ◽  
pp. 30-34 ◽  
Author(s):  
Dashan Dong ◽  
Jin Li ◽  
Yuanyuan Teng

Abstract Quayside container crane is a kind of large dimension steel structure, which is the major equipment used for lifting container at modern ports. With the aim to ensure the safety and reliability of the crane under seismic loads, an anti-seismic device is designed. To validate the efficiency and reliability of the anti-seismic device, elastic-plastic time history analysis under rare seismic intensity is carried out. And the results of elastic-plastic time history analysis when the crane installed anti-seismic device and uninstalled the device are compared.


2011 ◽  
Vol 243-249 ◽  
pp. 3737-3742
Author(s):  
Ying Hu ◽  
Jin Song Lei ◽  
Wen Xia Luo

In order to research the seismic behaviors of the eccentrically braced steel frames, used finite element software SAP2000 to build 20-storey single frame models with type D, K, and Y eccentrically braces, and did the seismic time history analyses to them. Comparisons were set between different kinds of braces in the distributions of moments, displacements, and accelerations for different layers produced by the EICENTRO seismic wave, TianJin seismic wave and NanJing seismic wave. Also, the analyses were set in the time history curves of displacements and accelerations. The results reveal that: type K is able to control the moments and displacements of the layers; while type Y is good at restricting the acceleration amplified effect, and the seismic behavior of type D is between the former two types.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 712-735
Author(s):  
Yiwei Hu ◽  
Nelson Lam ◽  
Prashidha Khatiwada ◽  
Scott Joseph Menegon ◽  
Daniel T. W. Looi

Code response spectrum models, which are used widely in the earthquake-resistant design of buildings, are simple to apply but they do not necessarily represent the real behavior of an earthquake. A code response spectrum model typically incorporates ground motion behavior in a diversity of earthquake scenarios affecting the site and does not represent any specific earthquake scenario. The soil amplification phenomenon is also poorly represented, as the current site classification scheme contains little information over the potential dynamic response behavior of the soil sediments. Site-specific response spectra have the merit of much more accurately representing real behavior. The improvement in accuracy can be translated into significant potential cost savings. Despite all the potential merits of adopting site-specific response spectra, few design engineers make use of these code provisions that have been around for a long time. This lack of uptake of the procedure by structural designers is related to the absence of a coherent set of detailed guidelines to facilitate practical applications. To fill in this knowledge gap, this paper aims at explaining the procedure in detail for generating site-specific response spectra for the seismic design or assessment of buildings. Surface ground motion accelerograms generated from the procedure can also be employed for nonlinear time-history analyses where necessary. A case study is presented to illustrate the procedure in a step-by-step manner.


2018 ◽  
Vol 195 ◽  
pp. 03021
Author(s):  
Omer Mughieda ◽  
Kenan Hazirbaba ◽  
Khaldoon Bani-Hani ◽  
Wassim Daoud

Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. In the current research, dynamic structural stability of a roller-compacted-concrete (RCC) dam was performed. The RCC dam was modeled using the finite element method to investigate the stability against sliding and the structural stability of the body of the dam. The commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element dynamic analysis was performed. Response spectrum and time history methods were used with different earthquake loads. The response spectrum of the 1995 Aqaba earthquake and a representative elastic-spectrum with smooth plateau for both Operating Basis Earthquake (OBE) and Maximum Credible Earthquake (MCE) were used in this study. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for both loading conditions.


Sign in / Sign up

Export Citation Format

Share Document