Finite Element Analysis of a Steel Spiral Staircase with Multiple Supports

2011 ◽  
Vol 255-260 ◽  
pp. 1964-1967
Author(s):  
Tao Chen ◽  
Hua Dong He

This paper presents finite element analyses of a steel spiral staircase with multiple supports. The complex geometries were modeled using commercial finite element method (FEM) software. Linear elastic analyses were carried out to investigate its deformation and moment distribution. Besides these, mode analysis was also performed to explore its pedestrian comfort. Finally the reliability of the structure is proved.

Author(s):  
Yasumasa Shoji

Recently FEA (Finite Element Analysis) is used in various engineering fields such as for design, verification, validation trouble-shooting and other applications. As the more users are treating FEA, the quality of analyses has become the larger issue. Finite Element Method (FEM) is just a calculation method to reproduce physical phenomena, and it has functional limitation in nature. As the software becomes more and more user-friendly, the limitation is hidden in the operation. However, as the limitation still exists in principle, users must be aware of it when using the FEA software. This paper will address about the issues that we are easily trapped in modeling, such as element selection, boundary conditions and other conditions.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2010 ◽  
Vol 7 (1) ◽  
pp. 142-145 ◽  
Author(s):  
P. L. Falkingham ◽  
K. T. Bates ◽  
L. Margetts ◽  
P. L. Manning

The occurrence of sauropod manus-only trackways in the fossil record is poorly understood, limiting their potential for understanding locomotor mechanics and behaviour. To elucidate possible causative mechanisms for these traces, finite-element analyses were conducted to model the indentation of substrate by the feet of Diplodocus and Brachiosaurus . Loading was accomplished by applying mass, centre of mass and foot surface area predictions to a range of substrates to model track formation. Experimental results show that when pressure differs between manus and pes, as determined by the distribution of weight and size of respective autopodia, there is a range of substrate shear strengths for which only the manus (or pes) produce enough pressure to deform the substrate, generating a track. If existing reconstructions of sauropod feet and mass distributions are correct, then different taxa will produce either manus- or pes-only trackways in specific substrates. As a result of this work, it is predicted that the occurrence of manus- or pes-only trackways may show geo-temporal correlation with the occurrence of body fossils of specific taxa.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2014 ◽  
Vol 788 ◽  
pp. 689-692
Author(s):  
Hong Guo ◽  
Yuan Yuan Han ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ye Ming Fan ◽  
...  

The effect of diamond shape on the thermal conductivity of diamond/Cu composites was studied by combine finite element method with the tests. The finite element result show that the thermal conductivity of the hexoctahedron diamond/Cu composites and the square diamond/Cu composites is 819 W/m·K and 1013 W/m·K respectively. And the testing results indicate that the thermal conductivity of the single hexoctahedron diamond/Cu composites and the hexoctahedron mixed with the square diamond/Cu composites is 659W/m·K and 720 W/m·K respectively. The testing results consist with the finite element calculation. Under the same circumstances, more {100} faces can bring in less overall thermal resistance in the composites thus improve the thermal conductivity of the composites. The results show that using square diamond particles helps to improve the thermal conductivity of diamond/Cu composites.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


Author(s):  
Charles Fourcade ◽  
Minji Fong ◽  
James Axline ◽  
Do Jun Shim ◽  
Chris Lohse ◽  
...  

Abstract As part of a fatigue management program for subsequent license renewal, a flaw tolerance evaluation based on ASME Code, Section XI, Appendix L may be performed. The current ASME Code, Section XI, Appendix L flaw tolerance methodology requires determination of the flaw aspect ratio for initial flaw size calculation. The flaw aspect ratios listed in ASME Section XI, Appendix L, Table L-3210-2, for austenitic piping for example, are listed as a function of the membrane-to-gradient cyclic stress ratio. The Code does not explicitly describe how to determine the ratio, especially when utilizing complex finite element analyses (FEA), involving different loading conditions (i.e. thermal transients, piping loads, pressure, etc.). The intent of the paper is to describe the methods being employed to determine the membrane-to-gradient cyclic stress ratios, and the corresponding flaw aspect ratios (a/l) listed in Table L-3210-2, when using finite element analysis methodology. Included will be a sample Appendix L evaluation, using finite element analysis of a pressurized water reactor (PWR) pressurizer surge line, including crack growth calculations for circumferential flaws in stainless steel piping. Based on this example, it has been demonstrated that, unless correctly separated, the membrane-to-gradient cyclic stress ratios can result in extremely long initial flaw lengths, and correspondingly short crack growth durations.


2018 ◽  
Vol 251 ◽  
pp. 04056 ◽  
Author(s):  
Zelimkhan Khakiev ◽  
Alexander Kruglikov ◽  
Georgy Lazorenko ◽  
Anton Kasprzhitskii ◽  
Yakov Ermolov ◽  
...  

Analysis of mechanical behavior of ballast shoulder of railway track reinforced by polyurethane binding agent has been performed by the method of finite-element simulation Limitation of the model of linear-elastic properties of geocomposite has been displayed. Dependence of elasticity modulus of geocomposite on deformation value has been suggested. Influence of penetration depth of polyurethane binding agent on behavior of railway track construction under different train loads has been studied.


2017 ◽  
Vol 21 ◽  
pp. 116-121
Author(s):  
Vasile Murăraşu ◽  
Vasile Mircea Venghiac

This paper presents a synthesis of the numerical analyses regarding the method of modelling the coupling beams of structural walls. The directions of the struts and ties are established according to the results obtained after a linear-elastic finite element analysis. The results obtained after modelling using the Strut and Tie Method, with the struts and ties oriented along the diagonals of the coupling beam, coincide with the results obtained by applying the theory provided by EC8, which proves the viability of the method. This is also confirmed by the results obtained after a non-linear analysis was carried out in the LUSAS finite element environment.


Sign in / Sign up

Export Citation Format

Share Document