The Experimental Study on Realkalization Repair for the Durability of RC Structure after Fire

2011 ◽  
Vol 255-260 ◽  
pp. 699-703
Author(s):  
Yan Xiong ◽  
Di Wu

The damages to reinforced concrete structures subjected high temperature of fire mainly include the followings: high temperature make the microstructure of concrete be loose and porous, the strength of concrete and steel reduce greatly.The alkaline hydration products of cement was decomposed under the high temperature, which would destroy the alkaline environment of concrete around steel and cause the steel corrosion. In this paper, the machanism of realkalization technique is present. Moreover, method of mercury intrusion pore measurement, SEM analysis and investigation on pH Value of concrete pore solutions experiment were carried out to study the durability repairing efficiency of realkalization technique.

2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


2018 ◽  
Vol 1 (1) ◽  
pp. 702-708
Author(s):  
Onur Onat ◽  
Burak Yön

Failure mode of reinforced concrete (RC) structures are classified according to tension reinforcement ratio of beam elements. To determine effect of tension reinforcement ratio on performance of RC structure, two planar RC structure were selected. One of them is 5 stories other of them is 7 stories. Two different concrete class, C20 and C25, were considered for analysis. Three tension reinforcement combinations were considered, three different tension reinforcement ratios were used. First case is the ratio of the tension reinforcement is lower than that of the compression reinforcement, second case is the ratio of the tension reinforcement is equal to the ratio of the compression reinforcement and third case is the ratio of the tensile reinforcement is higher than the compression reinforcement.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


Sign in / Sign up

Export Citation Format

Share Document