Interfacial Characteristics and Wear Resistance of WCp/White-Cast-Iron Composites

2007 ◽  
Vol 26-28 ◽  
pp. 293-296 ◽  
Author(s):  
Guo Shang Zhang ◽  
Yi Min Gao ◽  
Jian Dong Xing ◽  
Shi Zhong Wei ◽  
Xi Liang Zhang

To improve the wear resistance of high chromium white cast iron under severe abrasive conditions, a composites layer was designed for wear surface, which were locally reinforced with WC particles. And the local composites were successfully fabricated by optimized centrifugal casting process. Then the interface between WC and iron matrix was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And three body wear tests were carried out on a self-made rig to investigate the wear resistance of the composites. For comparison, the wear tests of high chromium white cast iron were also carried out under the same conditions. The results show that: There are no defects such as inclusion, crack, gas pore and so on in the obtained composites layer, which with a uniform thickness of 10 mm. WC particles are homogeneously distributed in the composites layer and tightly bonded with the iron matrix. The WC particles are partially dissolved in the iron matrix during centrifugal casting. The elements W, C and Fe react to form new carbides such as Fe3W3C or M23C6, which precipitate around former WC particles during subsequent solidification. So the interface between WC particles and the iron matrix is a strong metallurgical bonding. WC particles in the composites layer can effectively resist cutting by the abrasive, and then protect the matrix. The wear resistance of the composites layer is 7.23 times of that of high chromium cast iron.

2016 ◽  
Vol 16 (1) ◽  
pp. 117-123 ◽  
Author(s):  
A. Studnicki ◽  
R. Dojka ◽  
M. Gromczyk ◽  
M. Kondracki

Abstract Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the samples were conducted using the modified pin-on-disk method.


2016 ◽  
Vol 25 (41) ◽  
pp. 93 ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Florina-Diana Dumitru ◽  
Dairo Hernán Mesa-Grajales

<p>High-Chromium White Cast Iron is a material highly used in mining and drilling shafts for oil extraction, due to its high wear resistance. However, because of the austenitic matrix found in the as-cast state, an adequate heat treatment cycle is necessary. This paper studies the effects of different cooling media after a destabilization treatment on the microstructure, hardening and abrasion resistance behaviors of a hypoeutectic high chromium white cast iron. The results show that although air cooling followed by immersion in CO2 can effectively reduce the retained austenite, this is not enough to transform completely the retained austenite into martensite. The low retained austenite percentages improve bulk hardness, but they decrease the abrasion resistance of the high chromium cast iron. The best combination of hardness and wear resistance was found in the samples cooled in air, due to the percentage of retained austenite and a moderate precipitation of chromium carbide.</p>


2021 ◽  
Vol 1016 ◽  
pp. 56-62
Author(s):  
Carlos Camurri ◽  
Jasmín Maril ◽  
Eric Romero

The aim of this work was to study the wear behavior of high-chromium white cast iron of families ASTM A-532 II (B, D) and III A, used in mining equipment, in order to establish relationships between the wear resistance, hardness and microstructure of the alloys, with the ultimate purpose of predicting their resistance to abrasion. Samples from these cast irons were subjected to mechanical wear tests by rotating drum, then their micro/macro hardness was measured and microstructure analyzed by optical and scanning electron microscopy .It was found that when the macroscopic hardness differences were significant there was a strong correlation between the hardness and the loss of mass due to abrasion-impact wear. By contrast, when the alloys had similar hardness, the wear resistance was determined by morphology, size, and the distribution and connectivity of carbides and matrix and therefore was not predictable by an only simple hardness test.


2012 ◽  
Vol 217-219 ◽  
pp. 2410-2413 ◽  
Author(s):  
Xing Hai Shao ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Yan Li ◽  
Pin Gan Zhou ◽  
...  

The effects and the mechanisms of namo TiN on the high chromium cast iron are studied, the material has been prepared through infiltration casting and addition of high carbon ferrochrome powder and nano TiN powder. The alloy is formed on the surfaced of guide plate, and the wear resistance of alloy have been studied by means of SEM, XRD micro-analysis and wear-resistant performance. The grain size and the type of carbide in the organization are affected by nano TiN, and the wear resistance of carbon chromium alloy layer is affected by the type of carbide; when the addition of nano TiN is 1% (wt), the grain size is apparently refined, overeutectic primary M7C3 in the hypereutectic is precipitated uniformly in considerable amounts, therefore the wear resistance of alloy can be improved effectively.


2011 ◽  
Vol 228-229 ◽  
pp. 905-908
Author(s):  
Liu Jie Xu ◽  
Shi Zhong Wei ◽  
Ji Wen Li ◽  
Guo Shang Zhang ◽  
Xiang Dong Ma

To increase the wear resistance of components in slurry pump suffering from serious corrosive abrasion, new super high chromium cast iron (SHCCI) which contains 37wt.% chromium approximately and different carbon content were developed based on the high chromium cast iron with 26wt.% Cr (Cr26). The microstructure of SHCCI was investigated by SEM and XRD. The hardness and impact toughness of SHCCI was tested, and the corrosive wear property of SHCCI was also researched using MCF-30 type erosion abrasion tester under H3PO4 medium condition. The results show that the microstructure of SHCCI is composed of carbide of M7C3+M23C6, martensite and retained austenite. With the increase of carbon content, the hardness of SHCCI first increases and then decreases, the toughness increases, and the corrosive wear property decreases. The relative wear resistance of SHCCI is obviously superior to that of Cr26 cast iron, and the maximal relative wear resistance of SHCCI is three times higher than that of Cr26 cast iron.


Sign in / Sign up

Export Citation Format

Share Document