Extrudability and Bonding Strength of Copper Clad Aluminum Alloy Composites Produced by Indirect Extrusion Process

2007 ◽  
Vol 26-28 ◽  
pp. 417-420
Author(s):  
Hyouk Chon Kwon ◽  
Taek Kyun Jung ◽  
Jang Won Kang ◽  
H.J. Lee ◽  
K.H. Kim ◽  
...  

This paper described extrudability and bonding strength of copper (TPC) clad aluminum alloy (pure Al, Al3003, Al5005, and Al7072) composites produced by indirect extrusion at 350°C with extrusion ratio of 21.39. Conical typed die with semi angle of 30°. Carbon oil was used to reduce the friction between billet/sleeve and billet/die. Maximum extrusion pressure was estimated to 491MPa for the Cu/Al, 714MPa for the Cu/Al3003, 820MPa for the Cu/Al5005, and 743MPa for the Cu/Al7072 alloy composites. No surface fracture was observed. From SEM observation, diffusion layer between the sheath material and the core material of extruded composites is observed and its thickness was measured to about 1.5㎛. The bonding strength was estimated to 65MPa for the Cu/Al, 89.3MPa for the Cu/Al3003, 70MPa for the Cu/Al5005, and 75MPa for the Cu/Al7072 alloy composites.

2004 ◽  
Vol 449-452 ◽  
pp. 317-320 ◽  
Author(s):  
Hyouk Chon Kwon ◽  
Taek Kyun Jung ◽  
Sung Chul Lim ◽  
Mok Soon Kim

The optimized extrusion conditions from the present research were the extrusion temperature of 573~623K and the extrusion ratio(A0/A) of 21.39. Above the extrusion temperature of 623K, the fracture of sheath material was observed. It is due to the difference of flow stress between the sheath material and the core material during extrusion process. The bonding strength increased with increasing the extrusion temperature and the extrusion ratio. The bonding strength increased with increasing the annealing temperature. However, over 573K, it decreased abruptly since the thick and brittle intermetallic compounds of larger than 3µm were formed. The electricalconductivity of copper clad aluminum wire was about 70%IACS without annealing.


2005 ◽  
Vol 475-479 ◽  
pp. 967-970 ◽  
Author(s):  
Taek Kyun Jung ◽  
Hyouk Chon Kwon ◽  
Sung Chul Lim ◽  
Young Sup Lee ◽  
Mok Soon Kim

We investigated about the effects of core material(Pure Al, Al3003) on extrudability such as the maximum extrusion ratio and the bonding strength of Copper Clad Aluminum(CCA) by indirect extrusion. As a results of this experiment, the maximum extrusion ratio of Cu/Al3003 was 38, which was larger than 21.39 of Cu/Al(Cu/pure Al). It was because that the difference of flow stress between copper as the sheath material and Al3003 as the core material was smaller than that of between copper and pure aluminum under the same extrusion temperature of 623K. The bonding strength gradually increased when the extrusion ratio increased, on the other hand, the bonding strength of Cu/Al3003 was higher than that of Cu/Al under same extrusion conditions. The diffusion layer thickness that affected bonding strength was not affected by the kind of core material, but it gradually increased when the extrusion ratio increased. It was thought that Cu/Al3003 had a more intimate diffusion layer than Cu/Al had because the extrusion pressure of Cu/Al3003 was higher than that of Cu/Al under the same extrusion conditions.


2011 ◽  
Vol 491 ◽  
pp. 81-88 ◽  
Author(s):  
Kai Kittner ◽  
Birgit Awiszus

This paper provides an analysis of a co-extrusion process. The compound consists of the sleeve material, aluminum, and the core material, magnesium. It is imperative to produce impeccable compounds without cracks in the interface. Therefore, a simple indicating value for damaging effects during the process is necessary. In the numerical simulation the compound quality is noticeable by the current macro mechanical criterion of axial strain difference. A statistical analysis verifies this criterion as an adequate quality criterion. By means of this criterion it is possible to define a stable process window for the co-extrusion process.


2013 ◽  
Vol 467 ◽  
pp. 392-397 ◽  
Author(s):  
Shun Yu Shao ◽  
Wen Yen Wang ◽  
Yi An Chen

Slide rails are usually fabricated by roll forming and are used in kitchenware and cabinets mostly. However the product weight of slide rails is increased because larger dimensions are required to bear larger load when they are used in dies and warehouses. International suppliers start to develop Aluminum slide rails to decrease the product weight in recent years. The manufacturing and functional feasibility of Aluminum slide rail were discussed in this study. The Aluminum slide rail was designed according to ready-made slide rail, and the aluminum alloy was selected with required mechanical properties. The suitable extrusion die was designed and direct extrusion parameters of extrusion ratio, extrusion temperature, extrusion speed and extrusion load are also considered. The extrusion process of aluminum alloy was simulated by CAE software to check the mold and process design. The extrusion part of aluminum slide rail was carried out by extruder to verify the simulation results.


2021 ◽  
Author(s):  
Yongda Liu ◽  
Jie Xu ◽  
Zhengwu Zhang ◽  
Gang Liu ◽  
Debin Shan ◽  
...  

Abstract Micro-extrusion process of miniature heat pipe with axial micro grooves is particularly difficult due to ultra-large extrusion ratio and complex cross-sectional shape. In this study, the shape control of a miniature heat pipe in 6063 aluminum alloy with boundary dimension of 5×4 mm has been successfully realized during micro-extrusion. Micro-extrusion process and microstructure evolution of the miniature heat pipe were investigated by the combination of finite element (FE) analysis with experiments. The results show that material flow deformation behavior during micro-extrusion is highly affected by size effect, and lower ram speed is conductive to forming integrity, dimension accuracy and surface quality of the heat pipe profile. The primary mechanism for micro-extrusion failure of micro-grooves is severely more uneven material flow between the micro rib and base region at higher ram speed, which is caused by size effect and results in shear deformation and even fractures of micro rib. Further research shows that, compared to the extrusion using as-cast billets, much coarser grains were obtained after micro-extrusion using as-extruded billets at an ultra-large extrusion ratio of 205. Besides that, the entirely different texture components after extrusion were obtained instead of the typical < 100 > //ED or < 111 > //ED fiber texture components. These atypical texture components can be regarded as texture deviating from ideal texture by a certain angle (15° or 20°) along φ axis or φ1 axis.


2007 ◽  
Vol 340-341 ◽  
pp. 645-648 ◽  
Author(s):  
Dong Hwan Jang ◽  
Beong Bok Hwang

This paper is concerned with the analysis of plastic deformation of bimetal co-extrusion process. Extrusion is related to large deformation of material and leads to non-homogeneous deformation within work-piece material. The mechanism of plastic deformation during the composite rod extrusion is much more complicated than that in single metal extrusion. Deformation patterns of co-extrusion of two different materials are characterized by several process parameters. In this paper, the analysis is focused to investigate the effect of contact conditions along the interface between two different materials. The rigid-plastic finite element method was applied to the analysis of co-extrusion process. The selected materials are AA 1100 aluminum alloy as hard material and CDA 110 as soft one. This type of material selection was to examine the effect of hard core and soft sleeve and vice versa in terms of deformation pattern. The initial composite billets were prepared by inserting the core material in tight (0.023mm) and weak (0.012mm) interference bonding, respectively. Four different cases of co-extrusion process in terms of material combination and interference bonding were simulated to investigate the effect of material arrangement between core and sleeve, and of bonding on the plastic zones. It is concluded from the simulation results that the plastic zones in this co-extrusion process are not influenced much by the selection of material arrangements or bonding condition between construction materials. However, it was seen from the simulation results that the extrusion ratio of each construction material, i.e. homogeneity of co-extrusion, depends much on the material arrangement and the bonding condition.


2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


CrystEngComm ◽  
2020 ◽  
Vol 22 (46) ◽  
pp. 8036-8044
Author(s):  
Jannis Wehmeier ◽  
Markus Haase

is an interesting shell material for β-NaREF4 particles of the lighter lanthanides (RE = Ce, Pr, Nd), as variation of its strontium content x allows to vary its lattice parameters and match those of the core material.


Sign in / Sign up

Export Citation Format

Share Document