Study on Piezoelectric Stacked Generator

2011 ◽  
Vol 267 ◽  
pp. 1005-1009 ◽  
Author(s):  
Wei Lin ◽  
Zhe Li ◽  
Wen Chen ◽  
Jing Zhou

A piezoelectric generator based on the piezoelectric stacked elements is applied to realize electro- mechanical energy conversion in this paper. The piezoelectric stacked generator is constructed. The relational expression about output electrical characteristic parameters, the constructional dimension parameters of piezoelectric stack elements and external driving forces is discussed here. Theoretical predictions confirmed by experimental results show that the piezoelectric generator produces electrical power with higher efficiency, and energy harvesting circuit can harvest energy from the piezoelectric generator effectively.

2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Rémi Tardiveau ◽  
Frédéric Giraud ◽  
Adrian Amanci ◽  
Francis Dawson ◽  
Christophe Giraud-Audine ◽  
...  

A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.


2021 ◽  
Vol 11 (16) ◽  
pp. 7449
Author(s):  
Bo-Gun Koo ◽  
Dong-Jin Shin ◽  
Dong-Hwan Lim ◽  
Min-Soo Kim ◽  
In-Sung Kim ◽  
...  

We investigated the harvesting performance of a double piezoelectric generator, which was embedded into the engine block of a small passenger car. The resonance frequency is approximately between 37 and 52 Hz, where the cantilever showed maximum displacement. In reality, the cantilever has a vibrating characteristic, which dramatically reduces displacement, even when the operating frequency deviates slightly from the resonance frequency. To acquire a large mechanical energy-to-electrical energy conversion, a multiple-piezoelectric generator was employed to absorb the energy even when the vibration switched from a resonance to a non-resonance frequency. In this study, a variable mass box was designed and installed in the engine block of a car. The variable mass box consisted of the serial connection of two masses with different weights. The operating frequency deviated from a resonance to a non-resonance frequency within a few hertz (3~4 Hz); the reduction in vibration was lower, leading to a significant acquisition of the resulting power. This is due to the variable matching of the generator, realized by the action of dual mass. This type of generator was installed in the engine block and produced up to 0.038 and 0.357 mW when the engine was operating at 2200 and 3200 rpm, respectively.


Author(s):  
A. A. Mohamad Yusoff ◽  
K. A. Ahmad ◽  
S. N. Sulaiman ◽  
Z. Hussain ◽  
N. Abdullah

Introduction. Known vibrational energy harvesting methods use a source of vibration to harvest electric energy. Piezoelectric material works as a sensing element converted mechanical energy (vibration) to electrical energy (electric field). The existing piezoelectric energy harvesting (PEHs) devices have low sensitivity, low energy conversion, and low bandwidth. The novelty of the proposed work consists of the design of PEH’s structure. Air cavity was implemented in the design where it is located under the sensing membrane to improve sensitivity. Another novelty is also consisting in the design structure where the flexural membrane was located at the top of electrodes. The third novelty is a new design structure of printed circuit board (PCB). The purpose of improvised design is to increase the stress in between the edges of PEH and increase energy conversion. With the new structure of PCB, it will work as a substrate that absorbs surrounding vibration energy and transfers it to sensing element. Methods. Three techniques were successfully designed in PEH and fabricated namely PEH A, PEH B, and PEH C were characterized by two experiments: load and vibration. The load experiment measured load pressure towards the PEH, whereas the vibration experiment measured stress towards the PEH. Results. PEH C has the highest induced voltage for a weight of 5.2 kg at the frequency of 50 Hz and the highest stored voltage for a period of 4 min. The three techniques applied in PEHs were showed improvement in transducer sensitivity and energy conversion. Practical value. A piezoelectric acoustic generator was used in the experiment to compare the performance of the designed PEH with available piezoelectric transducers in the market. The new flexible membrane worked as a sensing element was worked as a cantilever beam. PVDF was used as a sensing element due to the flexibility of the polymer material, which is expected to improve sensitivity and operating bandwidth.


2019 ◽  
Vol 6 (6) ◽  
pp. 1207-1214 ◽  
Author(s):  
Bo Fang ◽  
Youhua Xiao ◽  
Zhen Xu ◽  
Dan Chang ◽  
Bo Wang ◽  
...  

Handedness-controlled actuating systems are constructed from continuous twisted fibers with mirrored handedness, superb flexibility and mechanical robustness, affording impressive start-up torques driven by polar solvents, and controllably outputting rotor kinetic energy, harvesting electrical energy, and delivering mechanical energy with a high energy conversion coefficient.


2014 ◽  
Vol 176 ◽  
pp. 447-458 ◽  
Author(s):  
Zhong Lin Wang

Triboelectrification is one of the most common effects in our daily life, but it is usually taken as a negative effect with very limited positive applications. Here, we invented a triboelectric nanogenerator (TENG) based on organic materials that is used to convert mechanical energy into electricity. The TENG is based on the conjunction of triboelectrification and electrostatic induction, and it utilizes the most common materials available in our daily life, such as papers, fabrics, PTFE, PDMS, Al, PVCetc.In this short review, we first introduce the four most fundamental modes of TENG, based on which a range of applications have been demonstrated. The area power density reaches 1200 W m−2, volume density reaches 490 kW m−3, and an energy conversion efficiency of ∼50–85% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available in our daily life, such as human motion, walking, vibration, mechanical triggering, rotation energy, wind, a moving automobile, flowing water, rain drops, tide and ocean waves. Therefore, it is a new paradigm for energy harvesting. Furthermore, TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement. After a summary of TENG for micro-scale energy harvesting, mega-scale energy harvesting, and self-powered systems, we will present a set of questions that need to be discussed and explored for applications of the TENG. Lastly, since the energy conversion efficiencies for each mode can be different although the materials are the same, depending on the triggering conditions and design geometry. But one common factor that determines the performance of all the TENGs is the charge density on the two surfaces, the saturation value of which may independent of the triggering configurations of the TENG. Therefore, the triboelectric charge density or the relative charge density in reference to a standard material (such as polytetrafluoroethylene (PTFE)) can be taken as a measuring matrix for characterizing the performance of the material for the TENG.


2012 ◽  
Vol 516-517 ◽  
pp. 1848-1853
Author(s):  
Bing Feng Han ◽  
Jin Kui Chu ◽  
Fei Yao ◽  
Ye Sheng Xiong ◽  
Xin Xin Huo

The method to transfer energy by less-contact magnetic force can decrease mechanical energy loss comparing with that by mechanical contact. In this paper, a novel piezoelectric rotary generator was designed based on the theory of the transition from less-contact magnetic force to the mechanical energy. ANSYS software was used to calculate the driving forces for the piezoelectric cantilever beam from the rotary wheel rotate in the different positions. The periodic driving force for the piezoelectric cantilever beam was obtained by the methods of fitting and Fourier transform. Laws of dynamic performance for piezoelectric cantilever beam were obtained by dynamic analysis. The results show that the low-frequency and variable rotational mechanical energy in the natural environment can be harvested by this novel rotary piezoelectric generator.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012118
Author(s):  
Mario Einax

Abstract Energy conversion in nanosized devices is studied in the framework of state-space models. We use a network representation of the underlying master equation to describe the dynamics by a graph. Particular segments of this network represent input and output processes that provide a way to introduce a coupling to several heat reservoirs and particle reservoirs. In addition, the network representation scheme allows one to decompose the stationary dynamics as cycles. The cycle analysis is a convenient tool for analyse models of machine operations, which are characterized by different nanoscale energy conversion processes. By introducing the cycle affinity, we are able to calculate the zero-current limit. The zero-current limit can be mapped to the zero-affinity limit in a network representation scheme. For example, for systems with competing external driving forces the open-circuit voltage can be determined by setting the cycle affinity zero. This framework is used to derive open-circuit voltage with respect to microscopic material energetics and different coupling to particle and temperature reservoirs.


Sign in / Sign up

Export Citation Format

Share Document