Microstructure, Mechanical and Shielding Properties of Fe67.5Ni23.5B9 Coating / 321 Stainless Steel Laminated Composite by the Air-Plasma Spraying Procedure

2011 ◽  
Vol 295-297 ◽  
pp. 1361-1368
Author(s):  
Wen Feng Yang

To meet the requirements of integrative mechanical properties and shielding effectiveness of nuclear radiations shielding materials, the boron-rich shielding coating (Fe67.5Ni23.5B9, in wt. %) were produced onto 321 stainless steel substrate (SS) by the air-plasma spraying technology. This type of coating-SS laminated composite will be likely to be used as protection against neutrons and γ rays from radiation shielding systems. The microstructure was characterized by scanning electron microscope (SEM), energy-dispersive spectrometry (EDS) and X-rays diffraction (XRD). The mechanical properties of Fe67.5Ni23.5B9 coatings were investigated, including adhesion strength, tensile properties and residual stress. The shielding effectiveness of the coating-SS laminated composite, including the slowing down of fast-speed neutrons, absorption for 0.4ev below thermal neutrons and the attenuation against 60Co and 137Cs γ rays were investigated. The results show that the produced Fe67.5Ni23.5B9 coatings-SS laminated composite possess homogeneous microstructure, satisfactory integrative mechanical properties and shielding effectiveness which testify the possible application in radiation shielding systems.

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Zheng Yan ◽  
Haoran Peng ◽  
Kang Yuan ◽  
Xin Zhang

Yb2O3-Gd2O3-Y2O3 co-doped ZrO2 (YGYZ) is considered to be a promising material in thermal barrier coating (TBC) applications. In this study, 2Yb2O3–2Gd2O3–6Y2O3–90ZrO2 (mol.%) (10YGYZ) feedstock candidates for air plasma spraying (APS) were prepared by calcination of agglomerated powders at 1100, 1200, 1300, 1400, and 1500 °C for 3 h, respectively. Incomplete solid solution was observed in calcined powders at 1100, 1200 and 1300 °C, and the 1500 °C calcined powder exhibited poor flowability due to intense sintering effect. The 1400 °C calcined powders were eventually determined to be the optimized feedstock for proper phase structure (cubic phase), great flowability, suitable apparent density and particle size distribution, etc. 10YGYZ TBCs with the optimized feedstock were prepared by APS, exhibiting pure c phase and good chemical uniformity. Controllable preparation of coatings with different porosity (i.e., 7%–9% and 12%–14%) was realized by stand-off distance adjustment.


2019 ◽  
Vol 364 ◽  
pp. 449-456 ◽  
Author(s):  
K. Bobzin ◽  
M. Öte ◽  
M.A. Knoch ◽  
I. Alkhasli

2007 ◽  
Vol 336-338 ◽  
pp. 1759-1761 ◽  
Author(s):  
Wen Ma ◽  
Yue Ma ◽  
Sheng Kai Gong ◽  
Hui Bin Xu ◽  
Xue Qiang Cao

Lanthanum-cerium oxide (La2Ce2O7, LC) is considered as a new candidate material for thermal barrier coatings (TBCs) because of its low thermal conductivity and high phase stability between room temperature and 1673K. The LC coatings with different La2O3 contents were prepared by air plasma spraying (APS) and their lifetime was evaluated by thermal cyclic testing from room temperature to 1373 K. The structures of the coatings were characterized by XRD and SEM and the deviation of the composition from the powder was determined by EDS analysis. Long time annealing for the freestanding coating at 1673K reveals that the near stoichiometric LC coating is stable up to 240h, and the stability decreases with increasing the deviation from stoichiometric LC composition. During thermal cyclic testing, spallation was observed within the top coat near the bond coat. It is considered that the effect of intrinsic stress caused by the coefficient of thermal expansion (CTE) mismatch between top coat and bond coat is larger than that of thermally grown oxide (TGO) and the bond adherence of top coat with TGO.


2019 ◽  
Vol 11 (40) ◽  
pp. 37209-37215 ◽  
Author(s):  
Lingyue Hu ◽  
Xuefeng Song ◽  
Xiao Shan ◽  
Xiaofeng Zhao ◽  
Fangwei Guo ◽  
...  

2020 ◽  
Vol 183 ◽  
pp. 196-206 ◽  
Author(s):  
Shalaka V. Shinde ◽  
Edward J. Gildersleeve V ◽  
Curtis A. Johnson ◽  
Sanjay Sampath

2020 ◽  
pp. 2050052
Author(s):  
G. MOHAMMED THALIB BASHA ◽  
B. VENKATESHWARLU

The influence of reinforcement of carbon nanotubes (CNTs) on microstructural features and mechanical properties of thermally sprayed Al2O3–3[Formula: see text]wt.%TiO2 and WC–20[Formula: see text]wt.%Co coatings was investigated. Alumina–Titania coatings were deposited by Air Plasma Spraying (APS) and Tungsten Carbide–Cobalt coatings were deposited by High-Velocity Oxy-Fuel (HVOF) spraying process. The coatings obtained with reinforcement of CNTs were characterized to interpret the microstructural changes and also to evaluate the variation in their mechanical properties. The percentage composition of CNTs in both APS and HVOF coatings systems were varied in the order of 2, 4, and 6[Formula: see text]wt.%. It has been found that homogenous dispersion of carbon nanotubes in the coating systems results in increased microhardness and reduced surface roughness. Also, the microstructural features of the coating systems clearly showed that the coatings are denser with fewer pores due to the presence of CNTs.


Sign in / Sign up

Export Citation Format

Share Document