Optimization of Parameters for CO2-Gas Shielding Arc Welding Based on the Double Weights Neural Network

2011 ◽  
Vol 304 ◽  
pp. 175-179
Author(s):  
Lin Lin Lv ◽  
Ju Ping Gu ◽  
Liang Hua ◽  
Wei Fan ◽  
Yu Jian Qiang

It is very difficult to predict the process detection and performance parameters, because of the highly nonlinear and multivariable coupling of welding process. In this paper, we construct a new method in optimization of parameters for CO2-gas shielding arc welding. By using the new Double Weights Model, this algorithm can give the Direction Weight, also the Core Weight at the same time. The new network inherits the traditional BP network and RBF (Radial Basis Functions) network with multivariable parameter settings and so on. We apply the network to the optimization of welding parameters, experimental results show that this algorithm can use less generations to calculate and get more accurate optimization effects, also not serious about a local minimum compared with RBF while using the same environment and equal network scale. Experiment proves that it is feasible to control welding parameters by the Double Weights Neural Network.

Author(s):  
M.-H. Park ◽  
B.-J. Jin ◽  
T.-J. Yun ◽  
J.-S. Son ◽  
C.-G. Kim ◽  
...  

Purpose: Since the welding automations have widely been required for industries and engineering, the development of the predicted model has become more important for the increased demands for the automatic welding systems where a poor welding quality becomes apparent if the welding parameters are not controlled. The automated welding system must be modelling and controlling the changes in weld characteristics and produced the output that is in some way related to the change being detected as welding quality. To be acceptable a weld quality must be positioned accurately with respect to the joints, have good appearance with sufficient penetration and reduce low porosity and inclusion content. Design/methodology/approach: To achieve the objectives, two intelligent models involving the use of a neural network algorithm in arc welding process with the help of a numerical analysis program MATLAB have been developed. Findings: The results represented that welding quality was fully capable of quantifying and qualifying the welding faults. Research limitations/implications: Welding parameters in the arc welding process should be well established and categorized for development of the automatic welding system. Furthermore, typical characteristics of welding quality are the bead geometry, composition, microstructure and appearance. However, an intelligent algorithm that predicts the optimal bead geometry and accomplishes the desired mechanical properties of the weldment in the robotic GMA (Gas Metal Arc) welding should be required. The developed algorithm should expand a wide range of material thicknesses and be applicable in all welding position for arc welding process. Furthermore, the model must be available in the form of mathematical equations for the automatic welding system. Practical implications: The neural network models which called BP (Back Propagation) and LM (Levenberg-Marquardt) neural networks to predict optimal welding parameters on the required bead reinforcement area in lab joint in the robotic GMA welding process have been developed. Experimental results have been employed to find the optimal algorithm to predict bead reinforcement area by BP and LM neural networks in lab joint in the robotic GMA welding. The developed intelligent models can be estimated the optimal welding parameters on the desired bead reinforcement area and weld criteria, establish guidelines and criteria for the most effective joint design for the robotic arc welding process. Originality/value: In this study, intelligent models, which employed the neural network algorithms, one of AI (Artificial Intelligence) technologies have been developed to study the effects of welding parameters on bead reinforcement area and to predict the optimal bead reinforcement area for lab joint in the robotic GMA welding process. BP (Back Propagation) and LM (Levenberg-Marquardt) neural network algorithm have been used to develop the intelligent model.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1494
Author(s):  
Ran Li ◽  
Manshu Dong ◽  
Hongming Gao

Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and the actual bead. In this paper, an artificial neural network model for predicting the bead geometry with changing welding speed was developed. The experiment was performed by a welding robot in gas metal arc welding process. The welding speed was stochastically changed during the welding process. By transient response tests, it was indicated that the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm backward to 22 mm forward with certain welding parameters. For this study, the input parameters of model were the spatial welding speed sequence, and the output parameters were bead width and reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates, as measured by a structured laser light sensor. The results showed that the model with the structure of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99% and 96%, respectively.


2013 ◽  
Vol 339 ◽  
pp. 700-705 ◽  
Author(s):  
Victor Lopez ◽  
Arturo Reyes ◽  
Patricia Zambrano

The effect of heat input on the transformation of retained austenite steels transformation induced plasticity (TRIP) was investigated in the heat affected zone (HAZ) of the Gas Metal Arc Welding GMAW process. The determination of retained austenite of the HAZ is important in optimizing the welding parameters when welding TRIP steels, because this will greatly influence the mechanical properties of the welding joint due to the transformation of residual austenite into martensite due to work hardening. Coupons were welded with high and low heat input for investigating the austenite transformation of the base metal due to heat applied by the welding process and was evaluated by optical microscopy and the method of X-Ray Diffraction (XRD). Data analyzed shows that the volume fraction of retained austenite in the HAZ increases with the heat input applied by the welding process, being greater as the heat input increase and decrease the cooling rate, this due to variation in the travel speed of the weld path.


2013 ◽  
Vol 455 ◽  
pp. 425-430 ◽  
Author(s):  
Xue Wu Wang ◽  
Shang Yong Yang

Intelligent procedure expert system was developed to select appropriate GTAW procedure in this paper. First, the function design and implementation methods of the welding procedure expert system were introduced. The expert system can present the welding procedure card, multimedia display of welding process, and output function to makes the data sharing more convenient. Then, the database design of the welding procedure expert system based on C/S mode was presented where the expert knowledge was stored. At last, the neural network model was established to realize procedure selection based on the neural network learning ability and the welding case from the database. With the BPNN model, the welding parameters can be obtained based on the input welding conditions.


2020 ◽  
Vol 19 (01) ◽  
pp. 131-146
Author(s):  
Aditya Kumar ◽  
Kulwant Singh

An exothermic flux for submerged arc welding process has been developed which is capable of enhancing weld penetration of the joint. For this purpose, thermit mixture in different proportions (20% and 40%) has been added to the parent flux by agglomeration process. Beads on plate were deposited using parent and developed exothermic fluxes for a comparative study. EH14 filler wires in combination with parent and exothermic fluxes were used in this investigation. The effects of welding parameters and exothermic flux on weld penetration were investigated and the results have been presented in this paper. It has been found that the penetration increases from 2.95 to 3.51[Formula: see text]mm with 40% thermit mixture addition to the parent flux. It is further observed that penetration increases with increase in the amount of thermit mixture added. A mathematical model has been developed to predict weld penetration or select suitable welding parameters to obtain the desired penetration. The significance of coefficients was tested using Student’s [Formula: see text]-test and the adequacy of developed model was tested using [Formula: see text]-test. The effects of various parameters on penetration have been presented in graphical form for better understanding.


2015 ◽  
Vol 813-814 ◽  
pp. 1104-1113 ◽  
Author(s):  
A. Sumesh ◽  
Dinu Thomas Thekkuden ◽  
Binoy B. Nair ◽  
K. Rameshkumar ◽  
K. Mohandas

The quality of weld depends upon welding parameters and exposed environment conditions. Improper selection of welding process parameter is one of the important reasons for the occurrence of weld defect. In this work, arc sound signals are captured during the welding of carbon steel plates. Statistical features of the sound signals are extracted during the welding process. Data mining algorithms such as Naive Bayes, Support Vector Machines and Neural Network were used to classify the weld conditions according to the features of the sound signal. Two weld conditions namely good weld and weld with defects namely lack of fusion, and burn through were considered in this study. Classification efficiencies of machine learning algorithms were compared. Neural network is found to be producing better classification efficiency comparing with other algorithms considered in this study.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1123
Author(s):  
Fuqiang Lai ◽  
Shengguan Qu ◽  
Roger Lewis ◽  
Tom Slatter ◽  
Ge Sun ◽  
...  

Due to their design, hollow cavity and filled sodium, hollow head and sodium filled engine valves (HHSVs) have superior performance to traditional solid valves in terms of mass and temperature reduction. This paper presents a new manufacturing method for 42Cr9Si2 steel hollow head and sodium filled valves. An inertia friction welding process parameter optimization was conducted to obtain a suitable process parameter range. The fatigue strength of 42Cr9Si2 steel at elevated temperatures was evaluated by rotating bending fatigue test with material specimens. Performance evaluation tests for real valve components were then carried out using a bespoke bench-top apparatus, as well as a stress evaluation utilizing a finite element method. It was proved that the optimized friction welding parameters of HHSV can achieve good welding quality and performance, and the HHSV specimen successfully survived defined durability tests proving the viability of this new method. The wear resistance of the HHSV specimens was evaluated and the corresponding wear mechanisms were found to be those classically defined in automotive valve wear.


Sign in / Sign up

Export Citation Format

Share Document