Thermal and Thermo-Oxidative Degradations of Deproteinized Natural Rubber and Natural Rubber

2011 ◽  
Vol 306-307 ◽  
pp. 50-57 ◽  
Author(s):  
Can Zhong He ◽  
Zheng Peng ◽  
Jie Ping Zhong ◽  
Shuang Quan Liao ◽  
Xiao Dong She ◽  
...  

Deproteinization of natural rubber was achieved in the latex stage. The structure of deproteinized natural rubber (DPNR) was characterized by fourier transform infrared spectroscopy (FTIR). The thermo degradation of DPNR was studied by thermogravimetry analysis (TG) under air atmosphere and nitrogen atmosphere. The kinetic parameters apparent activation energies (Ea) of the thermal decomposition reaction been calculated from the TG curves using the method described by Broido. And the results were compared with the thermo degradation of natural rubber (NR) under the same conditions. The effect of proteins in natural rubber latex on thermal/ thermo-oxidative stability of NR was discussed. The results show that: the absorptions of the proteins in DPNR at 1546 ㎝-1, compared to NR, become significantly weaker, nearly disappear, which indicates most of proteins has been removed from NR. The thermo degradation of DPNR in nitrogen atmosphere is a one-step reaction. The initial degradation temperature (T0) 、the maximum degradation temperature(Tp) and the final degradation temperature(Tf)as well as the Ea of DPNR are higher than those of NR, which indicates that DPNR represents a better thermal stability than NR under nitrogen atmosphere. Thermo-oxidative degradation of DPNR and NR are two-step reaction. The characteristic temperatures (T0, Tp and Tf) of DPNR are lower than those of NR. The Ea during the First Step of Thermooxidative Degradation of DPNR are also lower than those of NR. These results prove that the thermo-oxidative stability of DPNR is worse than that of NR. Protein is the key role to the thermal stability of natural rubber.

2018 ◽  
Vol 42 (17) ◽  
pp. 14179-14187
Author(s):  
Janisha Jayadevan ◽  
G. Unnikrishnan

Novel blend membranes from physico-chemically modified deproteinized natural rubber latex for drug release applications.


2012 ◽  
Vol 581-582 ◽  
pp. 663-667
Author(s):  
Zong Qiang Zeng ◽  
Hong Chao Liu ◽  
He Ping Yu

The rice husk ash (RHA) was first modified with epoxidized natural rubber latex (ENRL) and then blended with natural rubber latex (NRL) to prepare NR/RHA composite. The morphological structure, thermal stability and dynamic properties were studied with multiple instruments. FTIR and TGA analysis showed that ENR was grafted onto the surface of RHA. The composite prepared with modified RHA showed better dispersity and reinforcement compared to the composite with unmodified RHA, and the glass-transition temperature tended to be higher.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhi-Fen Wang ◽  
Si-Dong Li ◽  
Xin Fu ◽  
Hua Lin ◽  
Xiao-Dong She ◽  
...  

AbstractThe starch/natural rubber composite was prepared by blending the modified starch by esterification with natural rubber latex. The modified starch particles are homogenously distributed throughout the natural rubber (NR) matrix. In comparison with the host NR, the thermal stability of composite is significantly improved. The thermal degradation temperatures (T) and reaction activation energy (E) of composite are higher than those of the pure NR. The hardness, stress at 500%, tensile strength, permanent deformation and tear strength of composite increase linearly with the increment of dosage of modified starch.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3447
Author(s):  
Niratchaporn Rimdusit ◽  
Chanchira Jubsilp ◽  
Phattarin Mora ◽  
Kasinee Hemvichian ◽  
Tran Thi Thuy ◽  
...  

Graft copolymers, deproteinized natural rubber-graft-polystyrene (DPNR-g-PS) and deproteinized natural rubber-graft-polyacrylonitrile (DPNR-g-PAN), were prepared by the grafting of styrene (St) or acrylonitrile (AN) monomers onto DPNR latex via emulsion copolymerization. Then, ultrafine fully vulcanized powdered natural rubbers (UFPNRs) were produced by electron beam irradiation of the graft copolymers in the presence of di-trimethylolpropane tetra-acrylate (DTMPTA) as a crosslinking agent and, subsequently, a fast spray drying process. The effects of St or AN monomer contents and the radiation doses on the chemical structure, thermal stability, and physical properties of the graft copolymers and UFPNRs were investigated. The results showed that solvent resistance and grafting efficiency of DPNR-g-PS and DPNR-g-PAN were enhanced with increasing monomer content. SEM morphology of the UFPNRs showed separated and much less agglomerated particles with an average size about 6 μm. Therefore, it is possible that the developed UFPNRs grafted copolymers with good solvent resistance and rather high thermal stability can be used easily as toughening modifiers for polymers and their composites.


Ionic conductivity polymer electrolyte film based on epoxidized deproteinized natural rubber (EDPNR) and lithium salt lithium triflate (LiCF3SO3) were prepared by solution casting technique. The EDPNR was prepared from deproteinized natural rubber latex (DNR) epoxidized in the latex stage with fresh peracetic acid 33%, which was deproteinized by incubation of the latex with 0,1 wt% urea and 1 wt% surfactant. The ionic conductivity of EDPNR mixed with lithium salt was investigated through impedance analysis. The results show that the conductivity of EDPNR/ LiCF3SO3 mixture was dependent on LiCF3SO3 salt concentration and amount of epoxy group. The highest ionic conductivity at room temperature obtained is 1,71 x 10-5 S.cm-1 at 35 wt% LiCF3SO3 and 45 mol% epoxy groups. Fourier transform infrared spectroscopy (FTIR) spectra showed evidence of complexation between EDPNR and LiCF3SO3. Glass transition temperature, Tg displayed an increasing trend in which are the increase in salt concentration and the increase in epoxy group concentration.


Author(s):  
Roslim Ramli ◽  
Ai Bao Chai ◽  
Shamsul Kamaruddin ◽  
Jee Hou Ho ◽  
Fatimah Rubaizah Mohd. Rasdi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document