Finite Element Simulation of High-Speed Hard Turning

2011 ◽  
Vol 308-310 ◽  
pp. 1465-1470
Author(s):  
Guo Chen Du ◽  
Ying Chen ◽  
Jin Feng Zhang ◽  
Zhi Zhen Wei

The results reported in this paper pertain to the simulation of high speed hard turning when using the finite element method. In recent years high speed hard turning has emerged as a very advantageous machining process for cutting hardened steels. Among the advantages of this modern turning operation are final product quality, reduced machining time, lower cost and environmentally friendly characteristics. For the finite element modelling a commercial programme, namely the Third Wave Systems AdvantEdge, was used. This programme is specially designed for simulating cutting operations, offering to the user many designing and analysis tools. In the present analysis orthogonal cutting models are proposed, taking several processing parameters into account; the models are validated with experimental results from the relevant literature and discussed. Additionally, oblique cutting models of high speed hard turning are constructed and discussed. From the reported results useful conclusions may be drawn and it can be stated that the proposed models can be used for industrial application.

Author(s):  
Chong-Yang Gao ◽  
Liang-Chi Zhang ◽  
Peng-Hui Liu

This paper provides a comprehensive assessment on some commonly used thermo-viscoplastic constitutive models of metallic materials during severe plastic deformation at high-strain rates. An hcp model previously established by us was improved in this paper to enhance its predictability by incorporating the key saturation characteristic of strain hardening. A compensation-based stress-updating algorithm was also developed to introduce the new hcp model into a finite element program. The improved model with the developed algorithm was then applied in finite element simulation to investigate the high-speed machining of Ti6Al4V. It was found that by using different material models, the simulated results of cutting forces, serrated chip morphologies, and residual stresses can be different too and that the improved model proposed in this paper can be applied to simulate the titanium alloy machining process more reliably due to its physical basis when compared with some other empirical Johnson–Cook models.


2014 ◽  
Vol 611-612 ◽  
pp. 1210-1216 ◽  
Author(s):  
Farshid Jafarian ◽  
Mikel Imaz Ciaran ◽  
Pedro José Arrazola ◽  
Luigino Filice ◽  
Domenico Umbrello ◽  
...  

Inconel 718 superalloy is one of the difficult-to-machine materials which is employed widely in aerospace industries because of its superior properties such as heat-resistance, high melting temperature, and maintenance of strength and hardness at high temperatures. Material behavior of the Inconel 718 is an important challenge during finite element simulation of the machining process because of the mentioned properties. In this regard, various constants for Johnson–Cook’s constitutive equation have been reported in the literature. Owing to the fact that simulation of machining process is very sensitive to the material model, in this study the effect of different flow stresses were investigated on outputs of the orthogonal cutting process of Inconel 718 alloy. For each model, the predicted results of cutting forces, chip geometry and temperature were compared with experimental results of the previous work at the different feed rates. After comparing the results of the different models, the most suitable Johnson–Cook’s material model was indentified. Obtained results showed that the selected material model can be used reliably for machining simulation of Inconel 718 superalloy.


2012 ◽  
Vol 499 ◽  
pp. 208-212
Author(s):  
Ai Hua Gao ◽  
Fu Rong Wang ◽  
Jian Xin Zhang

The paper make the service life of relieving formed milling cutter as the optimization objective, proceed the simulation study on the mechanical degree of cutter, cutting data. The concrete method is that the orthogonal milling model is established to simulate the simulation milling process, some basic parameters which are obtained in the machining process are analyzed and discussed. The results indicate that the finite element simulation of the metal cutting processing can analyze quantitatively some physical properties, such as the cutting force, stress, strain and so on, the traditional way of qualitative analysis is changed. The state of machining is in favour of grasping in the theory, the theory and technology are provided to establish the proper processing technology strategy.


2016 ◽  
Vol 836-837 ◽  
pp. 444-451 ◽  
Author(s):  
Long Hui Meng

Finite element simulation of high speed machining of Ti6Al4V alloy was carried out based on the software of Abaqus. The Johnson-Cook constitutive model was chosen for the material of Ti6Al4V, the parameters of the model were obtained through the SHPB (Split Hopkinson Pressure Bar) experiment. The similarity of the chips obtained from the simulation and that obtained from the experiment indicated that the parameters of the Johnson-Cook constitutive model for Ti6Al4V alloy were reliable. Different cutting parameters and different tool geometric parameters were used in the simulations to find out their effects to the simulation results. Also a comparison was made between the results got form the simulations results and the experimental results, a good agreement between them indicated that the finite element simulation of high speed machining of Ti6Al4V is reliable, so it can be concluded that the finite element simulations of high speed machining can be widely used in practice to study the more about the machining process and reduce the experimental expenses.


2008 ◽  
Vol 392-394 ◽  
pp. 990-995 ◽  
Author(s):  
Hui Yue Dong ◽  
Pu Jin Huang ◽  
Y.B. Bi

Tool wear during high speed machining process plays an important role in machining cost and efficiency. The purpose of this study is to examine the impact of tribological properties of coatings on cutting performance. Finite element methods (FEM) were used to model the effect of coated and uncoated cutting tools (K10) on the machinability of the aluminum alloy 7050T7451. Uncoated, Single coated, such as TiC, TiN and Al2O3 and multi-coated tool were studied. All finite element models were assumed to be plane strain. To achieve constitutive model of Al7050T7451 under conditions of machining that high strain rate, high strain and high temperature occur, high speed impact experiment and material drawing experiment were done. Comparison of FEM results shows that the highest temperatures in tools, the temperature change rates of different tools from surface to its bulk material, and the temperatures in chips are changed greatly. It also shows that the cutting temperature of coated tool is lower than uncoated tools, but cutting forces change very little. All these results show that coatings can be used to reduce adhesion between a tool and a workpiece material. The wear resistance of coated tool can be improved effectively and tool life is increased correspondingly.


2013 ◽  
Vol 554-557 ◽  
pp. 2021-2028
Author(s):  
Yannick Senecaut ◽  
Michel Watremez ◽  
Damien Meresse ◽  
Laurent Dubar

High-speed machining is submitted to economical and ecological constraints. Optimization of cutting processes must increase productivity, reduce tool wear and control residual stresses in the workpiece. Developments of numerical approaches to simulate accurately high-speed machining process are therefore necessary since in situ optimization is long and costly. To get this purpose, rheological behaviour of both antagonists and representative friction models at tool-chip interface has to be studied as encountered during high-speed machining process. The study is led with AISI 1045 steel and an uncoated carbide tool. An experimental device has been first designed to simulate the friction behaviour at the tool-chip interface only in the zone near the cutting edge. Several tests are then performed to provide experimental data and these data are used to define the friction coefficient versus to the contact pressure, the sliding velocity and the interfacial temperature by a new formulation frictional law given by Brocail et al (2010). A two-dimensional finite element model of orthogonal cutting is developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting is then validated by comparing these process variables to experimental and numerical results obtained by Filice et al. (2006). This model makes possible qualitative analysis of input parameters related to cutting process and frictional models. A sensitivity analysis has been performed on the main input parameters (coefficients of the Johnson-Cook law, contact and thermal parameters) with the finite element model. The interfacial law determined by Brocail et al (2010) is implemented on this finite element model of machining and leads to improve numerical approaches of machining. Nevertheless, even if this law enables to reduce results between experimental and numerical approaches, some differences are still substantial. The advanced friction law must be complemented for higher sliding velocities and this work using a new specific experimental device will be presented in the second part of this paper.


2010 ◽  
Vol 455 ◽  
pp. 72-75 ◽  
Author(s):  
Feng Jiao ◽  
Y. Zhao ◽  
Jin Hui Jian ◽  
X. Liu

Compared with conventional turning (CT), ultrasonic aided turning (UAT) demonstrates many advantages in turning of hardened steel. In the paper, UAT is studied with finite element (FE) simulations and compared with conventional hard turning according to simulation results. Based on the thermo-elastic-plastic finite element equation for simulating the metal orthogonal cutting process, the paper introduces two-dimensional thermomechanically coupled FE models with and without ultrasonic assistance by means of MSC.MARC FE software. And the differences of cutting force and temperature distribution in the process zone between conventional and ultrasonic hard turning are investigated. Research results show that the mean cutting force and temperature in UAT are smaller than those in CT, UAT is an suitable method for precision turning of hardened steel.


2010 ◽  
Vol 139-141 ◽  
pp. 1101-1104
Author(s):  
Yong Yang ◽  
Yu Ling Wang ◽  
Chang He Li

Though a lot of research works have been done, some key technologies of finite element simulation have not been resolved completely. A detailed finite element model of high speed orthogonal cutting of titanium alloy Ti6Al4V is developed. Several mechanics models of cutting process, such as material constitutive model, chip separation model and chip damage model, are implemented to improve finite element simulation accuracy. The chip shape and cutting force agree well with experimental results, which show the finite element model developed in this study is reasonable. Using this finite element model, chip formation process of titanium alloy Ti6Al4V is simulated. Results indicate that the material between the shear bands is only weakly deformed, and the deformation is stronger on the tool side of the chip. This work will be a base for process parameter optimization, tool’s optimization selection and design during high speed cutting of difficult-to-cut titanium alloy.


2012 ◽  
Vol 197 ◽  
pp. 139-143
Author(s):  
Hua Bai ◽  
Yi Du Zhang

The change of ambient temperature will cause deformation during the machining process of large-scale aerospace monolithic component. Based on finite element simulation, thermally induced deformation of reinforcing plate is studied in such aspects as reinforcement structure, clamping method and temperature change, and contact function in finite element software is used to simulate the unilateral constraint between workpiece and worktable. The results indicate that reinforcing plate will produce warping deformation due to the change of ambient temperature. Different reinforcement structures and clamping methods have important influence on the deformation positions and degrees, and the deformation is proportional to the temperature change.


Sign in / Sign up

Export Citation Format

Share Document