Charge Effect in Organic Field-Effect Transistors - Analyzing Hall Measurements in the Accumulation Layer

2007 ◽  
Vol 31 ◽  
pp. 4-6 ◽  
Author(s):  
Harry L. Kwok

Hall measurement is an effective means to measure carrier density and mobility in metals and semiconductors. This work examined the carrier mobility determined in the accumulation layer of organic field-effect transistors (OFETS) and proposed a method to explain data taken from rubrene single-crystal devices. The model was used to extract information on the trap states and the properties of the transport layer at different temperature.

2015 ◽  
Vol 51 (3) ◽  
pp. 503-506 ◽  
Author(s):  
Gaole Dai ◽  
Jingjing Chang ◽  
Wenhua Zhang ◽  
Shiqiang Bai ◽  
Kuo-Wei Huang ◽  
...  

Two stable dianthraceno[a,e]pentalenes were synthesized and DAP2 exhibited a high charge carrier mobility of 0.65 cm2 V−1 s−1 due to its dense packing.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Mujeeb Ullah ◽  
Andrey K. Kadashchuk ◽  
Philipp Stadler ◽  
Alexander Kharchenko ◽  
Almantas Pivrikas ◽  
...  

AbstractThe critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this work we study the effects of active film morphology on the charge transport in Organic Field Effect Transistors (OFETs). We fabricated the OFETs using different substrate temperature to grow different morphologies of C60 films by Hot Wall Epitaxy. Atomic Force Microscopy images and XRD results showed increasing grain size with increasing substrate temperature. An increase in field effect mobility was observed for different OFETs with increasing grain size in C60 films. The temperature dependence of charge carrier mobility in these devices followed the empirical relation named as Meyer-Neldel Rule and showed different activation energies for films with different degree of disorder. A shift in characteristic Meyer-Neldel energy was observed with changing C60 morphology which can be considered as an energetic disorder parameter.


2011 ◽  
Vol 110 (10) ◽  
pp. 104513 ◽  
Author(s):  
Yong Xu ◽  
Mohamed Benwadih ◽  
Romain Gwoziecki ◽  
Romain Coppard ◽  
Takeo Minari ◽  
...  

2008 ◽  
Vol 92 (16) ◽  
pp. 163307 ◽  
Author(s):  
Naoko Kawasaki ◽  
Yohei Ohta ◽  
Yoshihiro Kubozono ◽  
Atsushi Konishi ◽  
Akihiko Fujiwara

2021 ◽  
Vol 37 (1) ◽  
pp. 015015
Author(s):  
Yogesh Yadav ◽  
Samarendra Pratap Singh

Abstract The semiconductor/dielectric interface is arguably the most important region in field-effect transistors. This article investigates the performance-enhancing effects of passivation of the dielectric surface by a self-assembled layer (SAM) of silanes on organic field-effect transistors. Apart from conventional figures of merit for the devices, the energetic distribution of the density of the in-gap trap-states (trap-DOS) and the contact resistance are evaluated using numerical methods. The investigation reveals that the surface passivation of the dielectric SiO2 has a dual effect on device operation. Firstly, it establishes quantitatively that the surface passivation leads to a significant reduction in the density of both shallow and deep traps in the organic semiconductor PBTTT-C14. This effect outweighs the impact of the SAM dipoles on the device turn-on. Secondly, the contact resistance gets lowered by a factor of more than 10 due to the improved top-surface morphology of the PBTTT-C14 thin film. The lower contact resistance in devices is corroborated by lower contact potential difference between PBTTT-C14 and gold, measured using scanning kelvin probe microscopy.


Sign in / Sign up

Export Citation Format

Share Document