Research on the System of Lighting Energy Conservation in Public Places

2011 ◽  
Vol 317-319 ◽  
pp. 423-428
Author(s):  
Hui Wen Liu ◽  
Han Shui Wu ◽  
Xue Zheng Zhao

To response the call of “constructing an economical society” and saving electricity consumption of public places, this paper designs an automatic control system of lumination in public places based on time, lighting intensity and personal distribution etc. It’s in low price that it is equivalent to a manual switch. Moreover, it’s low energy consumption, with steady performance, convenient installation without changing original line.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Chien-Lun Weng ◽  
Lih-Jen Kau

About 7% of people’s daily time is spent in taking vehicles between office and home. Besides, with the improvement of the living standard in today’s society, people’s requirements for a comfortable environment inside the car are constantly increasing and this must rely on an effective vehicle air conditioner to maintain the comfort of the cabin environment. In general, a vehicle air conditioner uses the air-mixing mode to regulate the temperature control system. In this mode of operation, the compressor needs to work continuously, which is extremely energy consuming. The vehicle’s air conditioner is greatly affected by the inner and outer heat load, which are generated therein. Furthermore, the heat load is instantly changeable. Therefore, only when the controller can adapt to the feature of heat load, then we can find the optimal control method, thus enabling the vehicle’s air conditioner to interact with the actual heat load to supply the balanced cooling capacity and, as a result, create the most comfortable environment inside the cabin with minimum energy consumption. For this purpose, we bring up in this paper a low-energy-consumption smart vehicle air-conditioning control system to detect total heat load, which can change the vehicle’s air-conditioning capacity mode to maintain the average temperature at 25.2°C∼26.2°C and the average humidity at 46.6%∼54.4% in the cabin. When the inner heat load is stable, the rest times of the compressor can reach 16∼23 times per hour, which attains a rate of fuel saving around 21%∼28%. With the proposed architecture, the purpose of the low-energy-consumption vehicle air-conditioning system can be achieved, which, at the same time, creates a comfortable environment inside the cabin.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 52 ◽  
Author(s):  
Sotirios Kontogiannis

This paper proposes a holistic management and control system for the apiculture industry (Integrated Beekeeping System of holistic Management and Control – IBSMC). This integrated beehive array system mainly focuses on the regulation of bees living conditions, targeting both minimizing bee swarm mortality and maximizing productivity. Within the proposed IBSMC system architecture, additional security functionalities are implemented for bee monitoring, low energy consumption and incidents response. As a complete unit, the proposed IBSMC system is both a hive conditions monitoring and safety system. It communicates with the outer world using low power RF data transmission and the LoRaWAN transceivers. This paper presents the proposed IBSMC architecture consisting of new beehive cells embedded with functionalities for integrated conditions regulation and security provisions, as well as the communication protocols used for facility-conditions management, incidents’ acquisition and incidents’ response.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2021 ◽  
pp. 159774
Author(s):  
Jing-Shuo Liu ◽  
Bao-Yu Song ◽  
Jing Huang ◽  
Zhao-Peng Deng ◽  
Xian-Fa Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document