Effects of Cutting Edge Truncation on Ultrasonically Assisted Grinding

2011 ◽  
Vol 325 ◽  
pp. 97-102
Author(s):  
Keisuke Hara ◽  
Hiromi Isobe ◽  
Mohd Fauzi Ismail ◽  
Shoichi Kaihotsu

Dies for injection molded parts require high-quality surface finishes in terms of both appearance and integrity. Manual finishing by skilled workers is required to produce such surfaces, but this takes several days. To minimize the amount of polishing required, a new finishing technique that employs ultrasonically assisted diamond grinding was proposed in a previous report. Cutting edge truncation prior to grinding is required to produce a mirror surface. In this study, the effect of cutting edge truncation was investigated and the relationships between the ground surface roughness and the cutting torque and the thrust force were considered to optimize the grinding conditions for mirror surface finishing.

2009 ◽  
Vol 76-78 ◽  
pp. 88-93 ◽  
Author(s):  
Keisuke Hara ◽  
Hiromi Isobe ◽  
Akira Kyusojin

High precision mold grinding technique to obtain mirror surface is required which realizes minimization or omission of final polishing by skilled workers. In the previous reports, ultrasonic diamond grinding experiments were carried out to confirm ultrasonic oscillation effect for die steel face grinding. Smooth and glossy surfaces were obtained successfully and little abrasive worn out was found. In the above techniques require cutting edge truncation because the cutting edge shape of a tool affects the ground surface resulting from transcription of cutting edge. This paper describes optimization techniques for the cutting edge truncation of diamond electroplated tools which are used in ultrasonically assisted grinding. Experiments were carried out to confirm truncation effects on the ground surface and grinding force. It was confirmed that roughness was proportional to inverse of thrust force. Minimum roughness in grinding conditions were estimated from the proportional diagrams. The minimum roughness shows limit of roughness on an each grinding condition.


2008 ◽  
Vol 389-390 ◽  
pp. 368-374 ◽  
Author(s):  
Keisuke Hara ◽  
Hiromi Isobe ◽  
Akira Kyusojin

High precision mold grinding technique to obtain mirror surface is required which realizes minimization or omission of final polishing by skilled workers. In the previous reports, ultrasonically diamond grinding experiments were carried out to confirm ultrasonically oscillation effect for die steel face grinding. Mirror surface was obtained successfully and little abrasive worn out was found. In the above technique, the cutting edge shape of a tool affects the ground surface resulting from transcription of cutting edge. In other words, cutting edge truncation of grinding tool is required to be smooth and glossy surface. This paper describes the cutting edge truncation of diamond electroplated tools which are used in ultrasonically assisted grinding. Experiments were carried out to confirm truncation effects on the ground surface and grinding force. It was confirmed that cutting edge truncation is effective method to obtain mirror surface and excessive truncation causes large grinding force and chattering.


Author(s):  
Abdalslam Darafon ◽  
Andrew Warkentin ◽  
Robert Bauer

This paper presents a new empirical model of the dressing process in grinding which is then incorporated into a 3D metal removal computer simulator to numerically predict the ground surface of a workpiece as well as the dressed surface of the grinding wheel. The proposed model superimposes a ductile cutting dressing model with a grain fracture model to numerically generate the resulting grinding wheel topography and workpiece surface. Grinding experiments were carried out using “fine”, “medium” and “coarse” dressing conditions to validate both the predicted wheel topography as well as the workpiece surface finish. For the grinding conditions used in this research, it was observed that the proposed dressing model is able to accurately predict the resulting workpiece surface finish for all dressing conditions tested. Furthermore, similar trends were observed between the predicted and experimentally-measured grinding wheel topographies when plotting the cutting edge density, average cutting edge width and average cutting edge spacing as a function of depth for all dressing conditions tested.


2011 ◽  
Vol 325 ◽  
pp. 60-65
Author(s):  
Haruhisa Sakamoto ◽  
Kyoko Nakamura ◽  
Yoshinori Sasaki ◽  
Shinji Shimizu

In this study, the determination method of the number of the effective cutting-edges had been proposed based on the measurements of working surface topography and the grinding force. Furthermore, its validity is made clear based on the topographical analysis of the ground surface roughness of pure copper, which is excellent in transcribing the working surface. From the results, the following are found out: The ground surface topography contains the periodical component, which is originated in the grinding and dressing conditions, on the fractal noise component. The cutting traces by each cutting-edge can be countable from the ground surface profile, and then, the number of the effective cutting-edges is identified at one line within the working surface. On the other hand, the number of the effective cutting-edges also can be identified based on the working surface, but, this method requires the determination of the typical grain shape. From the experiment, it is confirmed that the grain shape should be almost spherical for making the numbers of the effective cutting-edge identified from the working and ground surfaces equal.


2012 ◽  
Vol 565 ◽  
pp. 359-364 ◽  
Author(s):  
Masahiro Furuno ◽  
Koichi Kitajima ◽  
Takeshi Akamatsu

The results of an investigation on the effects of surface roughness on ball end mill are reported here. We used grindwheels with varying in grit between #325 and #1000 to grind ball end mill’s rake surface and flank surface, and then coated the end mill with TiAlN film, CrSiN film, and TiSiN film. We measured the state of adhesion on the films on the rake surface in continuous lathe milling as well as the surface roughness and cutting force. The results show that, in generating the cutting cutoff, the optimum grinding roughness differs between the near vicinity of the cutting-edge ridgeline and the part of the rake surface that is further away from the cutting-edge ridgeline. From that fact, we understand that the cutting characteristics of the work material and the surface area of the rake surface that is in contact with the cutting cutoff exert their respective influences during the cutting.


2012 ◽  
Vol 565 ◽  
pp. 28-33
Author(s):  
Nobuhito Yoshihara ◽  
Hiroaki Murakami ◽  
Naohiro Nishikawa ◽  
Masahiro Mizuno ◽  
Toshirou Iyama

Roughness is important criterion of ground surface. When the surface roughness is demanded to be smooth, it is required to make the grinding conditions optimum. To optimize the grinding conditions, relationship between grinding conditions and ground surface roughness must be known. Therefore, it has been attempted to reveal the effect of grinding conditions on the roughness of ground surface over the years. From previous researches, it becomes possible to estimate the ground surface roughness with statistical grinding theory. However, there are some parameters, such as wheel depth of cut and distribution of abrasive grain, are not factored in the theory. In this paper, fundamental research on cross sectional profile is carried out to consider the relationship between the wheel depth of cut and ground surface roughness.


2022 ◽  
Vol 16 (1) ◽  
pp. 38-42
Author(s):  
Nobuhito Yoshihara ◽  
◽  
Haruki Takahashi ◽  
Masahiro Mizuno

In order to reduce the grinding surface roughness, it is necessary to optimize the grinding conditions; this requires clear understanding of the relationship between the grinding conditions and ground surface roughness. Therefore, various studies have been carried out over the decades on the ground surface roughness and have proposed statistical grinding theory to define the relationship between the grinding conditions and ground surface roughness. However, the statistical grinding theory does not consider a few grinding conditions such as abrasive grain shape and distribution of abrasive grain, which affect the ground surface roughness. In this study, we construct a statistical grinding theory that considers the effect of abrasive grain distribution and improves the accuracy of the theoretical analysis of the ground surface roughness.


2005 ◽  
Vol 291-292 ◽  
pp. 221-226
Author(s):  
Takeshi Tanaka ◽  
T. Kobayashi

We observed that the lubrication effect is greater than the cooling effect for decreasing the friction heat in face grinding. It was clarified that cool-air grinding is difficult to apply to face grinding under the present grinding conditions. We could obtain the minimum ground surface roughness (hereafter noted as surface roughness) at a mist supply volume of 15 to 30ml/h in mist grinding. The largest stock removal rate (hereafter noted as grinding efficiency) is obtained in mist grinding. However, grinding efficient was small in cool-air mist grinding, by which a large cooling effect of cool air was expected. Though mist and cool-air mist grinding perform similar to wet grinding in few grinding passes, wet grinding is properly applied by large chip removal action in many grinding passes.


2011 ◽  
Vol 325 ◽  
pp. 315-320 ◽  
Author(s):  
Masahiro Furuno ◽  
Koichi Kitajima ◽  
Yousuke Tsukuda ◽  
Takeshi Akamatsu

The results of an investigation on the effects of surface roughness on adhesion to the coating using the assumed tungsten carbide end mill tip with various degrees of rake surface roughness are reported here. The grindstones with varying in grit between #230 and #1500 were used to grind tungsten carbide tips and then coated the tips with TiAlN film, CrSiN film, and TiSiN film. The state of adhesion on the films on the rake surface as well as the surface roughness and cutting resistance were measured in the continuous lathe turning. The results show that, in generating the cutting cutoff, the optimum grinding roughness differs between the near vicinity of the cutting-edge ridgeline and the part of the rake surface that is further away from the cutting-edge ridgeline. From that fact, it can be understood that the cutting characteristics of the work material and the surface area of the rake surface that is in contact with the cutting cutoff exert their respective influences during the cutting.


Sign in / Sign up

Export Citation Format

Share Document