Dynamic Analysis of a New Type of Hydro-Viscous Drive Winch

2011 ◽  
Vol 328-330 ◽  
pp. 2243-2247
Author(s):  
You Fu Hou ◽  
Dao Ming Wang ◽  
Qing Rui Meng ◽  
Bo Du

A new type of hydro-viscous drive (HVD) winch was designed by combining with differential gear train and HVD. It could meet the requirements of inclined hoist. In order to achieve good control properties, though dynamic modeling and simulation, the output moment curves of HVD device were obtained, then, the working processes of starting, braking and lowering weight were analyzed. Research results provide a theoretical basis for making control strategies for HVD winch. Finally, the starting process of HVD winch was studied in the experimental device; the result indicated that the starting curve of HVD winch efficiently in accordance with Harrison curve.

2015 ◽  
Vol 811 ◽  
pp. 284-290
Author(s):  
Cătălin Alexandru

The work deals with the dynamic modeling and simulation of a 4-wheel steering vehicle. The steering system for the front wheels is a classical one (with pinion & rack), while for the rear wheels, a new design with rotational cam & translational follower has been developed by considering the integral steering law. The virtual prototype of the vehicle was modeled - simulated by using the MBS software environment ADAMS of MSC. The results of the dynamic analysis prove the performance of the proposed solution, in terms of handling and stability.


2012 ◽  
Vol 457-458 ◽  
pp. 237-244
Author(s):  
Guo Chang Hu ◽  
Mei Ping Wu

Aiming at the requirements of autonomous control for stratospheric airships, based on description of the modeling plant and forces analysis in detail, the dynamic model is established by Newton Method. The motion characteristics of airships under control action are analyzed using simulation method. Simulation results indicate the correctness of dynamic model, and can make itself a theoretical basis for the overall design of the stratospheric airship.


2012 ◽  
Vol 163 ◽  
pp. 277-280 ◽  
Author(s):  
Wen Jing Wang ◽  
Shu Sheng Bi ◽  
Li Ge Zhang

Compliant mechanism is a kind of new type mechanism and its analysis is very complex because flexible links often under large deflections which introduce geometry nonlinearities. A new model (2R PRBM) can simulate accurately both the deflection path and angle of the flexible link. A new dynamic model of compliant mechanism is developed using the 2R PRBM. The dynamic equation of planar compliant mechanism is derived. The dynamic analysis on the natural frequency of compliant mechanism is obtained in the example of a planar compliant parallel-guiding mechanism. The numerical results show the advantage of the proposed method for the dynamic analysis of compliant mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wuzhong Tan ◽  
Jiangming Wu ◽  
De Ni ◽  
Hongzhi Yan ◽  
Enming Xiang ◽  
...  

New generations of powertrains are using gearboxes with multiple speed-shift designs to improve fuel efficiency. However, transmission controls and calibration are substantially time consuming, specifically during shift processes. To study the dynamic characteristics of a gearbox with a double-planetary gear train and analyze the influence of external excitation and internal parameters on the dynamic response of a system, dynamic modeling and simulation of the transmission system are conducted. Some physical processes are complex and difficult to express via lumped mass modeling. The dynamic model of a double-planetary gearbox is obtained by adopting the bond graph method based on the working principle analysis of the transmission, as well as the kinematic characteristics of the double-planetary gear train. Subsequently, state equations are deduced from the dynamic model of the power transmission system for simplified calculations, which can effectively facilitate the shift process simulation. The basic case of different shift plans and times is originally analyzed, followed by an analysis of the influence of damping, stiffness, and moment of inertia on transmission systems. The analysis results provide references for the structural design, control strategy optimization, and failure diagnostics of this gearbox type.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 120
Author(s):  
Francisco Fernández ◽  
José Díaz ◽  
María Folgueras ◽  
Inés Suárez

Thermal energy storage systems help to couple thermal energy generation and process demand in cogeneration facilities. One single deposit with two design temperatures and one main temperature step in sensible thermal energy storage define the thermocline systems. Performance of one high size real thermocline thermal energy storage system is analysed. Starting from temperature and mass flow rate data registered by the plant control system, one advanced thermodynamic analysis is performed. The quality of heat storage is analysed in terms of evaluation of the stratification in the thermocline zone. The temperature data registered at 21 positions is extended by displacement analysis generating detailed profiles. Fraction of recoverable heat, thermocline width, stratification indices based on energy and exergy analysis, and mean temperature gradients in the thermocline region are calculated. These parameters are monitored under real operation conditions of the plant. The calculated parameters are studied to check their distribution and correlation. First and Second Law indices show parallel behaviour and two values are found that delimit situations of high and low values of mean temperature gradients. It was observed that buoyancy generates uniform forced movement with the right water temperature entering the diffusers, but good control strategies are essential to avoid mixing. The system demonstrated great stability in this use.


2014 ◽  
Vol 556-562 ◽  
pp. 1408-1412
Author(s):  
Zhi Qiang Zhang

In this paper, the following work is done: a new type of translational transmission device is designed; explained in detail are the operating principle, structural features, relationship of mechanism parameter and non interference conditions of the movement; the optimization analysis of transmission device is implemented on the basis of non interference conditions of the bucket movement; structural modeling and simulation analysis are carried out by utilization of Pro/e & Recurdyn; and based on virtual prototype technology, the new type of translational transmission device is verified by experiments, the data of which prove the translational transmission device reasonable and practicable. In conclusion, this paper has laid the theoretical foundation of the practical application of the translational transmission device.


Sign in / Sign up

Export Citation Format

Share Document