The Life Cycle Routes for the Green Residential Buildings in China’s Low-Carbon City Background

2011 ◽  
Vol 347-353 ◽  
pp. 1387-1390 ◽  
Author(s):  
Xiao Jia Gao

Construction industry is an important tache and constitute in low-carbon city and emission reduction. Under the background of China’s low-carbon city, this paper has summed up the features of green residential buildings, and proposed the effective routes for the construction green residential buildings during life cycle, finally some suggestions were given from energy system, technologies and the point of government function.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2011 ◽  
Vol 99-100 ◽  
pp. 617-623
Author(s):  
Yan Li ◽  
Kai Xie

The public in China have a vague notion of architecture energy conservation, additionally the various and complex geographical position and climate, so the problem of architectural energy dissipation has deteriorated. In terms of architectural energy conservation, this design wholly considered energy conservation and emission reduction in the whole life cycle. The theory of “nonexistence-existence-nonexistence” should be carried out practically and low-carbon, ecological kindergarten will be founded in Huainan by studying and taking advantage all kinds of reasonable energy conservation technology. We should exert a subtle influence on cultivating children’s sense of energy conservation and emission reduction in order to make it be popular in the society which treats children as center.


2011 ◽  
Vol 243-249 ◽  
pp. 6714-6717
Author(s):  
Yan Li

The low-carbon planning of towns should build up the low-carbon ecology as its compilation concept, emphasize the concept of low-carbon economic system and urban low-carbon planning, and explain the planning strategy from town planning, overall planning, controlled planning with details, the design guide of downtown and the schemes of important projects etc.. The town planning emphasizes the technology applications of the industry system of low-carbon economic park, low-carbon energy system, low-carbon traffic system, low-carbon logistics system and carbon sink system etc.. The overall planning pays more attention to the design of low-carbon economic system, the grasp of whole form of low-carbon economic park, the using form and layout of the area, the plan and design of road system. The controlled planning with details and the design guide of downtown emphasize the technology application of planning design of reducing carbon emission, the study of living mode of low-carbon city, the planning of living community and technology study of the design of low-carbon compilation. The purpose of it is building up the planning mode of low-carbon ecological town.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5093
Author(s):  
Christoph Bahret ◽  
Ludger Eltrop

The Clean Energy for all Europeans Package by the EU aims, among other things, to enable collective self-consumption for various forms of energy. This step towards more prosumer-based and decentralized energy systems comes at a time when energy planning at a neighborhood scale is on the rise in many countries. It is widely assumed that—from a prosumer’s cost-perspective—shared conversion and storage technologies supplying more than a single building can be advantageous. However, it is not clear whether this is the case generally or only under certain conditions. By analyzing idealized building clusters at different degrees of urbanization (DOU), a linear-optimization approach is used to study the cost difference between shared energy infrastructure (smart energy neighborhoods, SENs) and individually planned buildings. This procedure is carried out for various emission reduction targets. The results show, that with higher emission reduction targets the advantage of SENs increases within rural environments and can reach up to 16%. Nevertheless, there are constellations in which the share of energetic infrastructure among buildings does not lead to any economic advantages. For example, in the case of building clusters with less than four buildings, almost no cost advantage is found. The result of this study underlines the importance of energy system planning within the process of urban planning.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6644
Author(s):  
Ruixi Zhao ◽  
Lu Sun ◽  
Xiaolong Zou ◽  
Yi Dou

Low carbon city development and greenhouse gas (GHG) emission mitigation in urban communities are urgent. There is great potential to improve the GHG inventory at the community level. Meanwhile, building zero-waste cities and improving waste treatment efficiency have been significant environmental issues due to the rapid increase of waste generation. This research aims to develop a community-scale GHG emission inventory of the waste sector and improve its accuracy and consistency through applying the bottom-up approach. This study covers both direct and indirect emissions categories of the waste sector with the goal of building a zero-waste community. Honjo Waseda community, located in Japan, was used as a case study community. Energy consumption waste treatment sectors were evaluated and calculated through first-hand field data. GHG emission estimation of the waste sector included waste incineration, residential wastewater, and waste transport. The highest emissions originated from Beisiagate supermarket due to the large waste amount produced, and the CO2-biomass carbon emissions reached approximately 50% of the total emissions. Furthermore, a quantitative analysis of the implementation of new technologies was also conducted. This study created proposals for GHG emission reduction toward a zero-waste community through the comparison of three cases. Case 1 was business as usual; Case 2 proposed a combination of incineration bio-gasification (MBT); Case 3 introduced a combination of solid recovered fuel (SRF) and a bio-gasification system. SRF contributed the most to emission reduction, and Case 3 exhibited the highest energy recovery. Furthermore, comparing the GHG emissions produced by the use of SRF for power generation and heat supply revealed that using SRF as a heat supply reduced more GHG emissions than using SRF for power generation.


Vestnik MGSU ◽  
2021 ◽  
pp. 1608-1619
Author(s):  
Azariy A. Lapidus ◽  
Otari D. Chapidze

Introduction. This study is aimed at developing a model of the life cycle of a multi-storey residential building, taking into account the factors of technical risks. This model makes it possible to identify the main factors of technical risks at different stages of a project’s life and predict its behavior. After examining an extensive list of both domestic and foreign literature, it is clear that the systematization and classification of the elements of the life cycle of a construction object in conditions of technical risk factors is an urgent task in the construction industry. The purpose of the study is to develop the most effective mathematical model for determining and predicting the influence of technical risk factors on the life cycle of a multi-storey residential building. Materials and methods. The study is based not only on an extensive review of scientific literature, whose attention is focused on technical risks, but also analyzed the stages of the life cycle of buildings and structures, used the method of analogies and the method of diagrams, based on the theory of fuzzy set and the Dempster-Schafer theory, a mathematical model of FLDS is formed, so an expert survey was conducted with leading experts in the construction industry, on the basis of which the selection of the main factors of technical risks is formed. Results. The problem of analyzing technical risks in the construction industry plays a significant role, this is due to the construction of a significant number of modern structures that are unique in their kind, both from an architectural point of view, and from the point of view of the originality of design and technological solutions. Conclusions. Due to the uncertainty of experts’ opinions regarding the likelihood of occurrence and the degree of impact of risk factors, a demonstrative mathematical model of FLDS based on two theories is proposed, which allows numerically determining and distributing the influence of a risk factor by ranks. The result of the study shows that the application of the FLDS mathematical model will significantly increase the success of the project, allowing you to see the critical factors of technical risks at the initial stage of the life cycle of a construction project.


2019 ◽  
Vol 11 (9) ◽  
pp. 2502 ◽  
Author(s):  
Shuxia Yang ◽  
Di Zhang ◽  
Dongyan Li

This paper takes the regional energy internet as the research object, and combines the power system, primary energy system, transportation system, and thermal energy system to give the system boundary. First, the mathematical decomposition method and the logical integration method were combined to decompose the total low-carbon capability into seven single low-carbon capabilities. On the basis of the mechanism of carbon emission reduction, a comprehensive calculation model for CO2 emissions reduction of the energy internet was then established. Finally, taking the Yanqing Energy Internet Demonstration Zone in China as an example, it was calculated that the model could reduce CO2 emissions by 14,093.19 tons in 2025. The results show that the methods adopted in this paper avoided the overlap calculation reasonably well; the comprehensive calculation model of CO2 emissions reduction has strong versatility, and can quantitatively calculate the carbon emission reduction amount for any completed or planned energy internet. Among the seven low-carbon capabilities, “replacement of gasoline with electricity” had the highest contribution rate, with a value of 42.62%, followed by “renewable energy substitution” (37.13%). The innovations in this paper include: (1) The problem of reasonable splitting of the overlapping parts in carbon emission reduction calculations being solved. (2) The first comprehensive calculation model of CO2 emission reduction on the energy internet being established. (3) The contribution of the seven low-carbon capabilities of the energy internet to total emissions reduction being clarified.


Sign in / Sign up

Export Citation Format

Share Document