Ignition Quality of Biodiesel from Cottonseed and Soybean Oil

2011 ◽  
Vol 347-353 ◽  
pp. 2651-2655
Author(s):  
Yong Bin Lai ◽  
Yin Nan Yuan ◽  
Xiu Chen

The thermal analysis has been employed to yield information on the biodiesel ignition quality since the ignition quality influences the combustion and exhaust emissions of the fuels in a compression ignition (CI) engine. The chemical compositions of -10 petrodiesel (-10PD), soybean-based biodiesel (SME) and cottonseed-based biodiesel (CME) are analyzed by gas chromatography-mass spectrometry (GC-MS). Ignition temperature of -10PD, SME and CME is determined by thermogravimetry-differential scanning calorimetry (TG-DSC). The study shows that the biodiesel is mainly composed of fatty acid methyl esters: C14:0–C24:0, C16:1–C22:1, C18:2 and C18:3. Biodiesel ignition quality is better than petrodiesel. The ignition temperature of CME and SME is 207.4 and 213.9 °C respectively. The ignition quality of biodiesel is better with shorter carbon chain lengths and more saturated fatty acid methyl ester (SFAME).

2011 ◽  
Vol 236-238 ◽  
pp. 159-163
Author(s):  
Xiu Chen ◽  
Yin Nan Yuan ◽  
Yong Bin Lai

The volatility has been studied since it influences the ignition quality of the fuels in a compression ignition engine. The chemical composition of -10# petrodiesel (-10PD) and rapeseed biodiesel (RME) was analyzed by gas chromatography-mass spectrometry (GC-MS). Volatility of -10PD and RME was studied by thermogravimetry (TG) and liquid volatile theory. Volatile index V was put forward for describing -10PD/RME volatility. A good correlation model was proposed for calculate the -10PD/RME volatility by RME blending ratio. The study showed that -10PD was mainly composed of alkanes: C8-C26. RME was mainly composed of saturated fatty acid methyl esters (SFAME): C14:0-C24:0, unsaturated fatty acid methyl esters (UFAME): C16:1-C22:1, C18:2 and C18:3. The mass fraction of SFAME and UFAME was 14.69% and 83.40%, respectively. RME is considerably more volatile in comparison to -10PD. The -10PD/RME volatility has relation to RME blending ratio. The volatility of B0-B20 is very close to -10PD. The volatility of B20-B100 is better with increasing the RME blending ratio.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6494
Author(s):  
Joanna Czerwik-Marcinkowska ◽  
Katarzyna Gałczyńska ◽  
Jerzy Oszczudłowski ◽  
Andrzej Massalski ◽  
Jacek Semaniak ◽  
...  

The microscopic alga Coccomyxa subglobosa, collected from the Głowoniowa Nyża Cave (Tatra Mountains, Poland), is a source of fatty acids (FAs) that could be used for biodiesel production. FAs from subaerial algae have unlimited availability because of the ubiquity of algae in nature. Algal culture was carried out under laboratory conditions and algal biomass was measured during growth phase, resulting in 5 g of dry weight (32% oil). The fatty acid methyl ester (FAME) profile was analyzed by means of gas chromatography–mass spectrometry (GC–MS). The presence of lipids and chloroplasts in C. subglobosa was demonstrated using GC–MS and confocal laser microscopy. Naturally occurring FAMEs contained C12–C24 compounds, and methyl palmitate (28.5%) and methyl stearate (45%) were the predominant lipid species. Aerophytic algae could be an important component of biodiesel production, as they are omnipresent and environmentally friendly, contain more methyl esters than seaweed, and can be easily produced on a large scale.


2021 ◽  
Vol 11 (12) ◽  
pp. 5413
Author(s):  
Keiko Iwasa ◽  
Harumichi Seta ◽  
Yoshihide Matsuo ◽  
Koichi Nakahara

This paper reports on the chemical compounds in arabica coffee beans with a high Specialty Coffee Association (SCA) cupping score, especially those in specialty coffee beans. We investigated the relationship between the chemical compounds and cupping scores by considering 16 types of Coffea arabica (arabica coffee) beans from Guatemala (SCA cupping score of 76.5–89.0 points). Non-targeted gas chromatography-mass spectrometry-based chemometric profiling indicated that specialty beans with a high cupping score contained considerable amounts of methyl-esterified compounds (MECs), including 3-methylbutanoic acid methyl ester (3-MBM), and other fatty acid methyl esters. The effect of MECs on flavor quality was verified by spiking the coffee brew with 3-MBM, which was the top-ranked component, as obtained through a regression model associated with cupping scores. Notably, 3-MBM was responsible for the fresh-fruity aroma and cleanness of the coffee brew. Although cleanness is a significant factor for specialty beans, the identification of compounds that contribute to cleanness has not been reported in previous research. The chemometric profiling approach coupled with spiking test validation will improve the identification and characterization of 3-MBM commonly found in arabica specialty beans. Therefore, 3-MBM, either alone or together with MECs, can be used as a marker in coffee production.


2003 ◽  
Vol 31 (2) ◽  
pp. 133-140 ◽  
Author(s):  
A Ozbek ◽  
O Aktas

The cellular fatty acid profiles of 67 strains belonging to three different species of the genus Mycobacterium were determined by gas chromatography of the fatty acid methyl esters, using the MIDI Sherlock® Microbial Identification System (MIS). The species M. tuberculosis, M. xenopi and M. avium complex were clearly distinguishable and could be identified based on the presence and concentrations of 12 fatty acids: 14:0, 15:0, 16:1ω7c, 16:1ω6c, 16:0, 17:0, 18:2ω6,9c, 18:1ω9c, 18:0, 10Me-18:0 tuberculostearic acid, alcohol and cyclopropane. Fatty acid analysis showed that there is great homogeneity within and heterogeneity between Mycobacterium species. Thus the MIS is an accurate, efficient and relatively rapid method for the identification of mycobacteria.


2015 ◽  
Vol 787 ◽  
pp. 766-770 ◽  
Author(s):  
J. Thangaraja ◽  
S. Rajkumar

Biodiesel is a renewable fuel and an attractive alternative to replace fossil diesel without major engine modifications. However, the emissions of oxides of nitrogen (NOx) from biodiesel fuelled engines are reported to be higher compared to diesel engine. The characteristics of biodiesel are known to depend on their fatty acid methyl ester (FAME) contents which vary with the feedstock. Thus the contribution of saturation and unsaturation of pure components of fatty acid methyl esters on NOx formation warrants a systematic investigation. This paper attempts to relate the composition of biodiesel with NOx formation. For this purpose, the NO formation from pure fatty acid methyl esters are predicted using extended Zeldovich reaction scheme. Also, the experiments are conducted for measuring oxides of nitrogen from a compression ignition engine operated using neat palm and karanja methyl esters and their blends providing biodiesel combinations of varying degree of saturation for investigation. The measured NOx concentrations are compared with the corresponding predictions to affirm the influence of fatty acid methyl ester on engine NOx characteristics. The results clearly indicate that the change in degree of saturation influences the NOx formation and an increase in the degree of saturation of biodiesel decreases the engine NOx emission.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 972-985 ◽  
Author(s):  
MAREK GOŁĘBIOWSKI ◽  
MAGDALENA CERKOWNIAK ◽  
MAŁGORZATA DAWGUL ◽  
WOJCIECH KAMYSZ ◽  
MIECZYSŁAWA I. BOGUŚ ◽  
...  

SUMMARYThe composition of the fatty acid methyl ester (FAME) and alcohol fractions of the cuticular and internal lipids of Calliphora vomitoria larvae, pupae and male/female adults was obtained by separating these two fractions by HPLC–LLSD and analysing them quantitatively using GC–MS. Analysis of the cuticular lipids of the worldwide, medically important ectoparasite C. vomitoria revealed 6 FAMEs with odd-numbered carbon chains from C15:0 to C19:0 in the larvae, while internal lipids contained 9 FAMEs ranging from C15:1 to C19:0. Seven FAMEs from C15:0 to C19:0 were identified in the cuticular lipids of the pupae, whereas the internal lipids of the pupae contained 10 FAMEs from C13:0 to C19:0. The cuticular lipids of males and females and also the internal lipids of males contained 5, 7 and 6 FAMEs from C15:0 to C19:0 respectively. Seven FAMEs from C13:0 to C19:0 were identified in the internal lipids of females, and 7, 6, 5 and 3 alcohols were found in the cuticular lipids of larvae, pupae, males and females respectively. Only saturated alcohols with even-numbered carbon chains were present in these lipids. Only 1 alcohol (C22:0) was detected in the internal lipids of C. vomitoria larvae, while just 4 alcohols from – C18:0 to C24:0 – were identified in the internal lipids of pupae, and males and females. We also identified glycerol and cholesterol in the larvae, pupae, males and females of C. vomitoria. The individual alcohols and FAMEs, as well as their mixtures isolated from the cuticular and internal lipids of larvae, pupae, males and females of C. vomitoria, demonstrated antimicrobial activity against entomopathogenic fungi.


2003 ◽  
Vol 58 (7-8) ◽  
pp. 502-504 ◽  
Author(s):  
Ahmet C. Gören ◽  
Gökhan Bilsel ◽  
Mehmet Altun ◽  
Fatih Satıl

Abstract The chemical composition of fatty acid methyl esters (FAMEs) from seeds of S. thymbra and S. cuneifolia were analyzed by GC/MS. 7 FAMEs were identified from the seeds of S. thymbra mainly as 9-octadecenoic acid methyl ester (43.9%), hexadecanoic acid methyl ester (11.4%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (30.2%), and octadecanoic acid methyl ester (14.1%), while from the seed of S. cuneifolia 10 FAMEs were obtained with the main components, similar to S. thymbra. These were identified as 9-octadecenoic acid methyl ester (10.1%), hexadecanoic acid methyl ester (methyl palmitate, 34.6%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (6.3%) and octadecanoic acid methyl ester (1.8%).


2017 ◽  
Vol 9 (26) ◽  
pp. 3949-3955
Author(s):  
Rodrigo V. P. Leal ◽  
Gabriel F. Sarmanho ◽  
Luiz H. Leal ◽  
Bruno C. Garrido ◽  
Lucas J. Carvalho ◽  
...  

Fatty acid methyl ester (FAME) intensities, by ESI-MS, used to their quantification in biodiesel.


Sign in / Sign up

Export Citation Format

Share Document