Forecasting Electricity Demand of Shanghai Based on Power Consumption Intensity Decomposition

2011 ◽  
Vol 347-353 ◽  
pp. 2796-2800
Author(s):  
Ying Ling Shi ◽  
Mei Peng

The paper describes the development of economy and electricity in Shanghai, builds a decomposition model of power consumption intensity, and analyzes the impacts of industrial power consumption intensity and industrial structure for the total power consumption intensity of Shanghai. Finally, the paper uses sub-scenarios to forecast electricity demand of Shanghai during Twelfth Five-Year period. The results show that the decrease of total power consumption intensity is mainly due to the decrease of industrial power consumption intensity, and the optimization of industrial structure has some contributions to the decrease of total power consumption as well.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zigang Dong ◽  
Xiaolin Zhou ◽  
Yuanting Zhang

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is166.1 fA/Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.


2016 ◽  
Author(s):  
S. Tesch ◽  
T. Morosuk ◽  
G. Tsatsaronis

The increasing demand for primary energy leads to a growing market of natural gas and the associated market for liquefied natural gas (LNG) increases, too. The liquefaction of natural gas is an energy- and cost-intensive process. After exploration, natural gas, is pretreated and cooled to the liquefaction temperature of around −160°C. In this paper, a novel concept for the integration of the liquefaction of natural gas into an air separation process is introduced. The system is evaluated from the energetic and exergetic points of view. Additionally, an advanced exergy analysis is conducted. The analysis of the concepts shows the effect of important parameters regarding the maximum amount of liquefiable of natural gas and the total power consumption. Comparing the different cases, the amount of LNG production could be increased by two thirds, while the power consumption is doubled. The results of the exergy analysis show, that the introduction of the liquefaction of natural gas has a positive effect on the exergetic efficiency of a convetional air separation unit, which increases from 38% to 49%.


2018 ◽  
Vol 26 (4) ◽  
pp. 172-184
Author(s):  
Muthna Jasim Fadhil

In modern systems communication, different methods have been improved to change the prior imitative techniques that process communication data with high speed. It is necessary to improve (OFDM) Orthogonal Frequency Division Multiplexing technique because the development in the guideline communication of wireless system which include security data and transmission data reliability. The applications communications of wireless is important to develop in order to optimize the process of communication leads to reduce the level consumption energy of the output level signal. The architecture of VLSI is used to optimize the performance transceiver in 802.11 n OFDM-MIMO systems, this idea concentrate on the design of 6x6 MIMO_OFDM system in software simulink of MATLAB then using generator system for transfer to code of VHDL and applying in FPGA Xilinx Spartan 3 XC3S200 . The modelsim used to get the simulation while Xilinx power estimator is used to calculate power. The results registered total power consumption about 94mW while compared with previous work  was 136mW which means a high reduction of about 30.8% .


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Mathias Beer ◽  
Yves-Simon Gloy ◽  
Mohit Raina ◽  
Thomas Gries

The crochet knitting machine is a warp knitting machine with a weft insertion system placed on a weft guide bar. On standard machines, the weft guide bar is made from aluminum and weighs about 570 g. The single-drive motors, which power the bar, account for 15–20% of the machines total power consumption. The aim of this research was to reduce power consumption by decreasing the mass of the weft guide bar. This was done by constructing the bar from carbon fiber reinforced plastics rather than aluminum, resulting in a mass saving of 260 g.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1429 ◽  
Author(s):  
Jin-Fa Lin ◽  
Cheng-Yu Chan ◽  
Shao-Wei Yu

In this paper, a novel latch-adder based multiplier design, targeting low voltage and low power IoT applications is presented. It employs a semi-dynamic (dynamic circuit with static keeper circuit) full adder design which efficiently incorporates the level sensitive latch circuit with the adder cell. Latch circuit control signals are generated by a chain of delay cell circuits. They are applied to each row of the adder array. This row-wise alignment ensures an orderly procedure, while successfully removing spurious switching resulting in reduced power consumption. Due to the delay cell circuit of our design is also realized by using full adder. Therefore, it is unnecessary to adjust the transistor sizes of the delay cell circuit deliberately. Post-layout simulation results on 8 × 8 multiplier design show that the proposed design has the lowest power consumption of all design candidates. The total power consumption saving compared to conventional array multiplier designs is up to 38.6%. The test chip measurement shows successful operations of our design down to 0.41 V with a power consumption of only 427 nW with a maximum frequency 500 KHz.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 120 ◽  
Author(s):  
Liangliang Jin ◽  
Chaoyong Zhang ◽  
Xinjiang Fei

The integration of scheduling and process planning can eliminate resource conflicts and hence improve the performance of a manufacturing system. However, the focus of most existing works is mainly on the optimization techniques to improve the makespan criterion instead of more efficient uses of energy. In fact, with a deteriorating global climate caused by massive coal-fired power consumption, carbon emission reduction in the manufacturing sector is becoming increasingly imperative. To ease the environmental burden caused by energy consumption, e.g., coal-fired power consumption in use of machine tools, this research considers both makespan as well as environmental performance criteria, e.g., total power consumption, in integrated process planning and scheduling using a novel multi-objective memetic algorithm to facilitate a potential amount of energy savings; this can be realized through a better use of resources with more efficient scheduling schemes. A mixed-integer linear programming (MILP) model based on the network graph is formulated with both makespan as well as total power consumption criteria. Due to the complexity of the problem, a multi-objective memetic algorithm with variable neighborhood search (VNS) technique is then developed for this problem. The Kim’s benchmark instances are employed to test the proposed algorithm. Moreover, the TOPSIS decision method is used to determine the most satisfactory non-dominated solution. Several scenarios are considered to simulate different machine automation levels and different machine workload levels. Computational results show that the proposed algorithm can strike a balance between the makespan criterion and the total power consumption criterion, and the total power consumption can be affected by machine tools with different automation levels and different workloads. More importantly, results also show that energy saving can be realized by completing machining as early as possible on a machine tool and taking advantage of machine flexibility.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3649
Author(s):  
Minhyun Jin ◽  
Hyeonseob Noh ◽  
Minkyu Song ◽  
Soo Youn Kim

In this paper, we propose a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) that has built-in mask circuits to selectively capture either edge-detection images or normal 8-bit images for low-power computer vision applications. To detect the edges of images in the CIS, neighboring column data are compared in in-column memories after column-parallel analog-to-digital conversion with the proposed mask. The proposed built-in mask circuits are implemented in the CIS without a complex image signal processer to obtain edge images with high speed and low power consumption. According to the measurement results, edge images were successfully obtained with a maximum frame rate of 60 fps. A prototype sensor with 1920 × 1440 resolution was fabricated with a 90-nm 1-poly 5-metal CIS process. The area of the 4-shared 4T-active pixel sensor was 1.4 × 1.4 µm2, and the chip size was 5.15 × 5.15 mm2. The total power consumption was 9.4 mW at 60 fps with supply voltages of 3.3 V (analog), 2.8 V (pixel), and 1.2 V (digital).


Sign in / Sign up

Export Citation Format

Share Document