CdS-Intercalated Nanocomposites for Hydrogen Production of Photocatalytic Water-Splitting

2011 ◽  
Vol 347-353 ◽  
pp. 52-55
Author(s):  
Yao Jun Zhang ◽  
Du Ping Chen ◽  
Li Cai Liu ◽  
Ya Chao Wang

A novel approach for synthesis of CdS-intercalated nanocomposites was investigated by thermal decomposition of cadmium thiourea complex embedded in the interlayer of montmorillonite. XRD results indicated that the incorporation of CdS into the interlayer of montmorillonite led to expansion of the layer spacing. The diffuse reflectance UV-visible spectra showed that the absorption edge of nanocomposites of CdS and montmorillonite was blue-shifted as compared with pure CdS due to quantum size effect. The photoelectric performance of nanocomposites was evaluated by photocatalytic water-splitting for production of hydrogen and the nanocomposites displayed much higher photocatalytic activities of H2 production than that of pure CdS owing to the synergistic effects between CdS and montmorillonite. A probable photocatalytic mechanism was proposed.

Nanoscale ◽  
2021 ◽  
Author(s):  
Benedict Osuagwu ◽  
Waseen Raza ◽  
Alexander Tesler ◽  
Patrik Schmuki

Titanium dioxide (TiO2) is the most frequently studied semiconducting material for photocatalytic water splitting. One of the favored forms of TiO2 for photocatalytic applications is layers of erected single-crystalline anatase...


Author(s):  
Michael Wullenkord ◽  
Christian Jung ◽  
Christian Sattler

Photocatalytic water splitting is a potential route for future carbon-free production of hydrogen. However catalysts still need to be enhanced in order to reach acceptable solar-to-fuel efficiency. In the context of the project HyCats funded by the Federal Ministry of Education and Research of Germany a high performance test facility for the evaluation of the activity of photocatalysts under practical conditions was established. It mainly consists of a solar concentrator and a planar receiver reactor. A modified linear Fresnel concentrator configuration was chosen based on ray tracing simulation results and improved concerning the number of different facets and the tolerance of tracking errors. It meets the major demand of a homogeneous irradiance distribution on the surface of the reactor. The SoCRatus (Solar Concentrator with a Rectangular Flat Focus) is a 2-axis solar concentrator with a geometrical concentration ratio of 20.2 and an aperture area of 8.8 m2. The tracking accuracy is better than 0.1° respecting both the solar azimuth and altitude angle. Its 22 highly UV/Vis-reflective flat aluminum mirror facets reflect the sunlight resulting in a rectangular focus with a nominal width of 100 mm and a nominal length of 2500 mm. The reactor is placed in the focal plane at a distance of 2500 mm from the mounting plane of the facets and allows concentrated solar radiation to penetrate suspensions of water, electrolytes and photocatalyst particles flowing through it. Corresponding to a maximum angle of incidence of 36.6° the Quartz window reflects not more than 5% of the incoming radiation and assures only marginal absorption, particularly in the UV-part of the sun’s spectrum. The material of the receiver body is PTFE (polytetrafluoroethylene) providing reflection coefficients above 90% concerning wavelengths of UV-A and UV-B. The design of the reactor features two parallel reaction chambers, offering the possibility to test two separate suspensions at the same irradiation conditions. A pump transports the tempered suspension to the reactor. The geometry of the reactor inlet and outlet minimizes critical regions with inadequate flow caused by vortices. Any evolved gases are separated from the suspension in a tank together with nitrogen introduced in the piping upstream and are analyzed by micro chromatographs. Numerous devices are installed in order to control and monitor the reaction conditions. First experiments have been carried out using methanol as a sacrificial reagent.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Zhihui Li ◽  
Hanchu Chen ◽  
Yanyan Li ◽  
Hui Wang ◽  
Yanru Liu ◽  
...  

Photocatalytic water-splitting with Z-scheme semiconductor heterojunctions is a promising way to achieve renewable solar fuels. Nevertheless, developing earth-abundant direct Z-scheme photocatalytic systems for efficient H2 production is still under-developed. In...


Author(s):  
Xueyou Gao ◽  
Deqian Zeng ◽  
Qingru Zeng ◽  
Zongzhuo Xie ◽  
Toyohisha Fujita ◽  
...  

Co-based cocatalysts have attracted considerable attention as potential alternatives for the noble-metal (Pt) in photocatalytic water splitting. However, the two-dimensional (2D) porous-structured Co-based cocatalysts toward photocatalytic hydrogen (H2) production application...


2020 ◽  
Vol 8 (7) ◽  
pp. 3701-3707 ◽  
Author(s):  
Jingjing Cao ◽  
Hui Wang ◽  
Yajie Zhao ◽  
Yan Liu ◽  
Qingyao Wu ◽  
...  

The P-doped porous carbon nitride achieves photocatalytic water splitting via a two-channel pathway (water oxidation/oxygen reduction reactions) with high H2O2 yield of 1968 μmol g−1 h−1 under room temperature and normal pressure without sacrificial agent and cocatalyst.


2021 ◽  
Author(s):  
Francis Opoku ◽  
Osei Akoto ◽  
Samuel Osei-Bonsu Oppong ◽  
Anthony Apeke Adimado

Sustainable hydrogen (H2) production via photocatalytic water splitting is considered the most promising energy storage, where two-dimensional van der Waals heterostructure, composed of two or more 2D monolayer materials, has...


2021 ◽  
Vol 56 ◽  
pp. 141-151 ◽  
Author(s):  
Yingying Wang ◽  
Yan-Xin Chen ◽  
Tarek Barakat ◽  
Tian-Ming Wang ◽  
Alain Krief ◽  
...  

2019 ◽  
Vol 484 ◽  
pp. 1089-1101 ◽  
Author(s):  
Muhammad Usman Azam ◽  
Muhammad Tahir ◽  
Muhammad Umer ◽  
Mohammad Musaab Jaffar ◽  
M.G.M. Nawawi

Sign in / Sign up

Export Citation Format

Share Document