Application of Erosion 2D Model for Erosion Studies in Makurdi Metropolis of Benue State, Nigeria

2011 ◽  
Vol 367 ◽  
pp. 815-825 ◽  
Author(s):  
M.O. Isikwue ◽  
T.G. Amile

The equations of Erosion 2D Model (a physically based model) were transformed into a computer programme called EROSOFT and used to predict the rate of soil loss in Makurdi metropolis. The model has detachment, transport and deposition components. Four sites were chosen within the metropolis for this study. Soil samples were collected from the sites for laboratory analysis. Rainfall and runoff fluids were collected from the sites to determine their densities. Levelling instrument was used to detremine the channels slopes. The model predicted an average annual soil loss rate of 310kg m-2s-1 for the metropolis. The sensitivity analysis of the model indicates that straight slopes are more prone to soil erosion. The result of the model deviates slightly from established facts that, sandy soils are more erodible and hence prone to be easily detached. Nevertheless, the model shows that soil erosion is influenced by slope geometry and rainfall intensity. The study attributes the major causes of soil erosion in the city to urban runoff concentration and removal of vegetation, and therefore suggests the use of land grading, land forming and cover cropping as well as conservation structures like road side drains for the control of erosion in the metropolis.

2019 ◽  
Vol 11 (2) ◽  
pp. 529-539 ◽  
Author(s):  
Mahmud Mustefa ◽  
Fekadu Fufa ◽  
Wakjira Takala

Abstract Currently, soil erosion is the major environmental problem in the Blue Nile, Hangar watershed in particular. This study aimed to estimate the spatially distributed mean annual soil erosion and map the most vulnerable areas in Hangar watershed using the revised universal soil loss equation. In this model, rainfall erosivity (R-factor), soil erodibility (K-factor), slope steepness and slope length (LS-factor), vegetative cover (C-factor), and conservation practice (P-factor) were considered as the influencing factors. Maps of these factors were generated and integrated in ArcGIS and then the annual average soil erosion rate was determined. The result of the analysis showed that the amount of soil loss from the study area ranges from 1 to 500 tha−1 yr−1 with an average annual soil loss rate of 32 tha−1 yr−1. Considering contour ploughing with terracing as a fully developed watershed management, the resulting soil loss rate was reduced from 32 to 19.2 tha−1 yr−1. Hence, applying contour ploughing with terracing effectively reduces the vulnerability of the watershed by 40%. Based on the spatial vulnerability of the watershed, most critical soil erosion areas were situated in the steepest part of the watershed. The result of the study finding is helpful for stakeholders to take appropriate mitigation measures.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatek Belay ◽  
Daniel Ayalew Mengistu

Abstract Background Soil erosion is one of the major threats in the Ethiopian highlands. In this study, soil erosion in the Muga watershed of the Upper Blue Nile Basin (Abay) under historical and future climate and land use/land cover (LULC) change was assessed. Future LULC was predicted based on LULC map of 1985, 2002, and 2017. LULC maps of the historical periods were delineated from Landsat images, and future LULC was predicted using the CA–Markov chain model. Precipitation for the future period was projected from six regional circulation models. The RUSLE model was used to estimate the current and future soil erosion rate in Muga watershed. Results The average annual rate of soil erosion in the study area was increased from about 15 t ha−1 year−1 in 1985 to 19 t ha−1 year−1 in 2002, and 19.7 t ha−1 year−1 in 2017. Expansion of crop cultivation and loss of vegetation caused an increase in soil erosion. Unless proper measure is taken against the LULC changes, the rate of soil loss is expected to increase and reach about 20.7 t ha−1 year−1 in 2033. In the 2050s, soil loss is projected to increase by 9.6% and 11.3% under RCP4.5 and RCP8.5, respectively, compared with the baseline period. Thus, the soil loss rate is expected to increase under both scenarios due to the higher erosive power of the future intense rainfall. When both LULC and climate changes act together, the mean annual soil loss rate shows a rise of 13.2% and 15.7% in the future under RCP4.5 and RCP8.5, respectively, which is due to synergistic effects. Conclusions The results of this study can be useful for formulating proper land use planning and investments to mitigate the adverse effect of LULC on soil loss. Furthermore, climate change will exacerbate the existing soil erosion problem and would need for vigorous proper conservation policies and investments to mitigate the negative impacts of climate change on soil loss.


2019 ◽  
Vol 4 (4) ◽  
pp. 434-443 ◽  
Author(s):  
Fayera Gudu Tufa ◽  
Tolera Abdissa Feyissa

Soil erosion is dramatically increasing and accelerating in developing countries like Ethiopia. It has worrisome economic and environmental impacts and causes nutrient loss on agricultural land, sedimentation in rivers and reservoirs, clogged canals and other water supply systems. Determination of spatial distribution of soil loss rate in upper Didessa watershed is an important priority for prioritizing the area for watershed management practices in order to reduce soil erosion. The Revised Universal Soil Loss Equation (RUSLE) framed with geographical information system and remote sensing technique was used to estimate the mean annual soil loss in Upper Didessa Watershed, Ethiopia. Digital elevation model (DEM) with 30mx30m resolution was collected from Ministry of Water, Irrigation and Energy and used to delineate the watershed. Soil loss factors of the watershed like length and slope factor (LS), soil erodibility factor (K), cover management factor (C), support practicing factor (P) and rain fall erosivity factor (R) were evaluated and integrated in GIS to compute the annual soil loss rate of the watershed. The results of this work reveal that the annual rate of soil loss in the watershed is 5.23 t / ha / year. They also show that the central part of the watershed is an area prone to soil erosion. DISTRIBUIÇÃO ESPACIAL DA PERDA DO SOLO NA BACIA HIDROGRÁFICA SUPERIOR DIDESSA, ETIÓPIA ResumoA erosão do solo está aumentando e acelerando dramaticamente em países em desenvolvimento como a Etiópia. Tem impactos econômicos e ambientais preocupantes e causa perda de nutrientes em terras agrícolas, sedimentação em rios e reservatórios, entupimento de canais e outros sistemas de fornecimento de água. A determinação da distribuição espacial da taxa de perda de solo na bacia hidrográfica superior do Rio Didessa é uma prioridade importante para priorizar a área para práticas de manejo de bacias hidrográficas a fim de reduzir a erosão do solo. A Equação Universal de Perda de Solo Revisada (RUSLE), enquadrada com sistema de informação geográfica e técnica de sensoriamento remoto, foi usada para estimar a perda média anual de solo na Bacia do Alto Didessa, na Etiópia. O modelo digital de elevação (DEM) com resolução de 30mx30m foi coletado no Ministério da Água, Irrigação e Energia e utilizado para delinear a bacia hidrográfica. Os fatores de perda de solo da bacia hidrográfica, como comprimento e fator de inclinação (LS), fator de erodibilidade do solo (K), fator de manejo da cobertura (C), fator de prática de apoio (P) e fator de erosividade da chuva (R) foram avaliados e integrados no SIG para calcular a taxa anual de perda de solo da bacia hidrográfica. Os resultados deste trabalho revelam que taxa anual de perda de solo da bacia hidrográfica é de 5,23 t / ha / ano. Mostram ainda que a parte central da bacia hidrográfica é uma área propensa à erosão do solo. Palavras-chave: SIG. Perda de solo. RUSLE. Didessa superior da bacia hidrográfica.


2021 ◽  
Author(s):  
Zihao Cao ◽  
Qihua Ke ◽  
Keli Zhang ◽  
Zhuodong Zhang

<p>Rocky desertification is a serious environmental issue in karst regions that restricts food production and hinders local economic development. Generally, soil loss is known as a dominant factor driving rocky desertification. However, it is difficult to couple rocky desertification with the soil loss rate based on a database from short-term field plot observations. Hence, it is imperative to reconstruct the history of soil loss over long-term periods and to correlate the rocky desertification process with the soil loss rate. In karst regions, the most common geomorphic landforms are closed peak-cluster depressions. Researchers have shown that estimating soil loss from hillslopes based on a sediment deposition rate in a peak-cluster depression is possible. In this study, two typical peak-cluster depressions with different degrees of rocky desertification were selected, and sediment cores with lengths of 2 m were sampled from the depressions to determine pollen taxa, soil properties and sediments dating at different depths.The results showed that the burial ages of the sediments in the depressions were different in the time series. During the past millennium, soil loss in the LJWD watershed showed an overall decreasing and then increasing trend. While the change in soil erosion was more complex in the DJT watershed, high and low rates appeared alternately in the 748±100 – 2018 period. The alluvial pollen analysis demonstrated that the soil erosion changes in both watersheds were closely related to human farming activities and vegetation landscape changes. The soil loss history over the past 1000 years was insufficient to reveal the evolution of rocky deserts in karst areas, indicating that the formation of rocky deserts should have occurred over a longer historical period. Overall, the optically stimulated luminescence (OSL) dating and palynological techniques were reliable in the investigation of local erosional history in karst regions.</p>


2021 ◽  
Vol 14 ◽  
pp. 117862212199584
Author(s):  
Gebrehana Girmay ◽  
Awdenegest Moges ◽  
Alemayehu Muluneh

Soil erosion is 1 of the most important environmental problems that pose serious challenges to food security and the future development prospects of Ethiopia. Climate change influences soil erosion and is critical for the planning and management of soil and water resources. This study aimed to assess the current and future climate change impact on soil loss rate for the near future (2011-2040), middle future (2041-2070), and far future (2071-2100) periods relative to the reference period (1989-2018) in the Agewmariam watershed, Northern Ethiopia. The 20 models of Coupled Model Intercomparison Project phase 5 global climate models (GCMs) under Representative Concentration Pathway (RCP) 4.5 (intermediate scenario) and 8.5 (high emissions scenario) scenarios were used for climate projection. The statistical bias correction method was used to downscale GCMs. Universal Soil Loss Equation integrated with geographic information system was used to estimate soil loss. The results showed that the current average annual soil loss rate and the annual total soil loss on the study area were found to be 25 t ha−1 year−1 and 51 403.13 tons, respectively. The soil loss has increased by 3.0%, 4.7%, and 5.2% under RCP 4.5 scenarios and 6.0%, 9.52%, and 14.32% under RCP 8.5 scenarios in the 2020s, 2050s, and 2080s, respectively, from the current soil loss rate. Thus, the soil loss rate is expected to increase on all future periods (the 2020s, 2050s, and 2080s) under both scenarios (RCP 4.5 and RCP 8.5) due to the higher erosive power of the future intense rainfall. Thus, climate change will exacerbate the existing soil erosion problem and would need for vigorous new conservation policies and investments to mitigate the negative impacts of climate change on soil loss.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Lewoye Tsegaye ◽  
Rishikesh Bharti

AbstractSoil erosion is a serious and continuous environmental problem in Ethiopia. Lack of land use planning, environmental protection, over-cultivation, and overgrazing are prominent causes of erosion and sedimentation. This study is conducted in Anjeb watershed located in the Upper Blue Nile Basin, Ethiopia. In this study, the quantity and distribution of soil erosion, sediment delivery ratio (SDR), and sediment yield of the watershed were assessed by employing remote sensing, geographic information system (GIS), and revised universal soil loss equation analysis capabilities. Important data sets of topography, soil, conservations practices, cover management, and rainfall factors were processed and superimposed in GIS analysis, and soil loss rate, SDR, and sediment yield of the watershed were derived. Based on the result found, the watershed was categorized into six classes of erosion: slight (0–5), moderate (5–10), high (10–15), very high (15–30), severe (30–50), and very severe (> 50) t ha−1 yr−1. The estimated average annual soil loss was 17.3 t ha−1 yr−1. The soil loss rate is higher in the steeper and topographically dissected part of the watershed. The average sediment delivery capacity was about 0.122. The result showed that the average sediment yield in the watershed was grouped into classes of low (< 2.5), moderate (2.5–7.5), high (7.5–12.5), very high (12.5–22.5), severe (22.5–40), and very severe (> 40) t ha−1 yr−1. It is found that from a total of 20,125.5 t yr−1 eroded soil over the whole watershed 2254.5 t yr−1 of sediment has been brought and deposited to the channels. Sediment accumulation from the watershed threatens the storage capacity and life span of Anjeb reservoir which is the source of irrigation water downstream. The study provides an insight to planners and resource managers to design and implement practices of watershed management to reduce erosion and enhance land productivity and to minimize the reservoir sediment accumulation.


2021 ◽  
Vol 314 ◽  
pp. 04004
Author(s):  
Nabil Aouichaty ◽  
Yassine Bouslihim ◽  
Said Hilali ◽  
Abdeljalil Zouhri ◽  
Yahya Koulali

Topographic slope information is one of the critical variables, which governs soil erosion. This topographic slope can be derived from the Digital Elevation Model (DEM). Significant discrepancies are found in the estimation of soil erosion using different DEMs of different resolutions. In the present study, the Revised Universal Soil Loss Equation (RUSLE) was used for soils in the Settat province (Morocco) to assess the risk of water erosion caused by abandoned quarries. The soil erosion rate was divided into five classes to illustrate the erosion rate variability using two DEMs (30m and 90m). The impact of topography on erosion was determined by calculating the value of the LS factors. In this case, the values obtained vary between 0 - 120.623 for ASTER DEM (30m) and 0 - 10.225 for DEM SRTM (90m). The results also show that most quarries have a soil loss rate that varies between 0 t/ha/year and 8.1 t/ha/year for ASTER DEM (30 m). However, for DEM SRTM (90 m), the soil loss rate is zero. This suggests that RUSLE model users should use high-resolution input data for a close representation of reality and capture the maximum results with reasonable accuracy.


2020 ◽  
Author(s):  
Yonas Hagos

Abstract Background:Zariema watershed located in the Tekeze basin Northern highlands of Ethiopia has been a subject to serious problem of soil erosion. Soil degradation due to soil erosion is one of the key environmental and socioeconomic case which threats soil nutrient depletion and food security in northern Ethiopian highlands. This study was conducted to estimate the soil loss rate and identify hotspot areas using RUSLE model in the Zariema watershed, Tekeze basin, Ethiopia.Methods:The rainfall – runoff erosivity(R) factor was determined from mean annual rainfall, soil erodibility(K) factor from soil map, Topographic factor (Ls) were generated from DEM, Crop management factor (C) and Conservation support practice factor(P) obtained from land use/land cover map. Finally, the factors were integrated with Arc GIS 10.3 tools to estimate soil loss rates and landscape vulnerability to soil erosion of the study watershed. Results:Annual Soil losses rates were estimated to be between 0 ton ha-1 year-1 in plain areas and 989 ton ha-1 year-1 in steep slope areas of the study watershed. The total annual soil loss from the entire watershed area of 2239.33Sq. Km was about 3,603,895.23 tons. About 31.41% of the study areas were affected through the soil loss hazard which is above acceptable soil loss rate 11 ton ha-1 year-1. The spatial hazard classification rate was 68.59% of the watershed area categorized as slight (0 – 11 ton ha-1 year-1), 8.03% moderate (12 – 18 ton ha-1 year-1), 7.64% high (19 – 30 ton ha-1 year-1), 6.65% very high (31 – 50 ton ha-1 year-1) and 9.09% severe (>51 ton ha-1 year-1). Conclusion:As a result, In the cultivation land around steep slope the soil loss rate was in sever condition. To mitigate the severity of the soil erosion in the identified prone area which accounts for about 31.41% of the total watershed area immediate action of soil and water conservation required.


Land ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Luciene Gomes ◽  
Silvio Simões ◽  
Eloi Dalla Nora ◽  
Eráclito de Sousa-Neto ◽  
Maria Forti ◽  
...  

While food and nutrition security are issues that national and international organizations are tackling, one of the central problems often overlooked is the essential role of soils in providing nutritious food. Soils are the base for food production and food security. However, the majority of soils are in fair and poor conditions, with the most significant threats being erosion and loss of nutrients. In this study, we estimate the potential of soil loss, agricultural productivity loss, and nutrient loss for Brazil’s most important agricultural region, the Brazilian Cerrado, for the years 2000 and 2012. For this, we applied the Revised Universal Soil Loss Equation (RUSLE) model integrated with a geographical information system (GIS) to estimate annual soil loss rate and agricultural productivity loss, and used total nitrogen and total phosphorus in soil to estimate the annual nutrient loss rate caused by soil loss. All model factors and data were obtained from the literature. The results show that agricultural expansion in the Brazilian Cerrado is increasing the area of severe erosion, occasioning agricultural productivity decrease and soil nutrient depletion. The annual soil loss rate increased from 10.4 (2000) to 12.0 Mg ha−1 yr−1 (2012). Agricultural productivity loss occurred in more than 3 million hectares of crops and silviculture in 2000 and in more than 5.5 million hectares in 2012. Severely eroded areas lost between 13.1 and 25.9 times more nutrients than areas with low and moderate soil loss rates. These findings show that government policy should be directed to ensure the sustainable use of soils, mainly in agriculturally consolidated regions of the Brazilian Cerrado.


Sign in / Sign up

Export Citation Format

Share Document