Studies on the Criteria of Post-Earthquake Building Safety Evaluation Based on Principle “Repairable Level under Moderate Earthquake”

2011 ◽  
Vol 368-373 ◽  
pp. 1509-1512
Author(s):  
Jiao Rong Ma

This study focuses on the reliability assessment of buildings subjected to moderate earthquake loadings. The safety of the buildings is expressed with criteria of both global level and member level summarized from the deformation-based design theories in the overseas codes. The inter-story drift ratio is chosen as the key criteria. An allowable inter-story drift ratio of repairable level is proposed for seismic design, and a numerical example is examined. The results indicate that the allowable inter-story drift can effectively control the damage level under moderate earthquake.

2014 ◽  
Vol 513-517 ◽  
pp. 3500-3503
Author(s):  
Li Na Pei

Based on the current seismic codes, the elastic capacity calculation under frequent earthquake and ductile details of seismic design should be used for both seismic design of new buildings and seismic evaluation of existing buildings to satisfy the seismic fortification criterion, namely/no damage under frequent earthquake, repairable under moderate earthquake, and no collapse under severe earthquake0. For the evaluation, rebuilding and extending of existing structures which dissatisfy the ductile details of current seismic codes, the elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced while story drift ratio and deformation of component are used as performance targets to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures.


A series of Indonesian earthquakes, especially from Sumatra caused vibration on buildings in Peninsular Malaysia like Kuala Lumpur and Penang Island. In East Malaysia, Sabah state has been classified as a region with active local seismic fault. A moderate earthquake with Mw6.1 was occurred in Ranau on 5th June 2015 and caused damage on buildings either the structural or non-structural members. Hence, the implementation of seismic design on new buildings is important to ensure public safety. However, such action has its own pro and contra especially when dealing with cost. Therefore, current research work presents the influence of seismic design consideration on the increment of cost for steel reinforcement. For that purpose, a four storey reinforced concrete school building was generated and used as basic model for analysis, design, and taking off. Two level of seismicity representing by the reference peak ground acceleration, αgR equal to 0.07g and 0.10g has been taken into account in the structural analysis and seismic design process. Besides, three soil type namely as soil type A, soil type C, and soil type E also has been considered as variable parameter. Based on result, total steel tonnage in beams for models considering seismic design increases around 14% to 119% higher than the model without seismic design. For columns, the increment is around 13% to 155%. Generally, total cost of steel used as for concrete reinforcement of the whole structure increases around 13% to 131% depending on the level of seismicity and soil type.


2011 ◽  
Vol 255-260 ◽  
pp. 4212-4216
Author(s):  
Gong Yuan Xie ◽  
Zhang Yue

Risk matrix is applied to evaluate seismic risk on mountainous bridge. In this article, a continuous bridge is used as example to analyze the seismic risk of key position under a usual earthquake. Related control method is proposed to provide technical support for bridge seismic design and operation maintenance.


2017 ◽  
Vol 33 (1_suppl) ◽  
pp. 415-438 ◽  
Author(s):  
Max Didier ◽  
Salome Baumberger ◽  
Roman Tobler ◽  
Simona Esposito ◽  
Siddhartha Ghosh ◽  
...  

A Rapid Visual Damage Assessment was initiated in the direct aftermath of the 2015 Gorkha earthquake to assess the safety and damage of residential buildings in the areas affected by the earthquake. Over 30,000 paper assessment forms have been subsequently digitized. The collected data set allows comparison of the observed damage to the residential building stock to the damage expected using existing fragility curves. Under certain conditions and respecting certain limitations, the post-earthquake building safety and damage data can be used to update the existing fragility functions for the Nepalese building stock. Recommendations are made for the improvement of post-earthquake building safety assessments in Nepal in order to: (1) make data collection more consistent, (2) increase the accuracy of the collected data, and (3) make more effective use of the collected data after future earthquakes.


2013 ◽  
Vol 859 ◽  
pp. 43-47
Author(s):  
Gui Ming Zhang ◽  
Wen Feng Liu ◽  
Zhi Hong Chen

Seismic displacement design method and allowable values of story drift are compared between Chinese, American, European and Japanese seismic design codes. An engineering example's seismic displacement is calculated in the methods given by the four codes, and story drift are compared. Researches show that allowable story drift of Chinese code under rare earthquake action is approximately close to that of American with a 10% probability of exceedance in 50 years, and allowable story drift of Japanese code is more rigorous than other three codes. For three-story three-span reinforced concrete frame structure, in the condition of same intensity, displacement of Chinese under the earthquake action with 2~3% exceeding probability of 50-year is greater than that of American and European with 10% exceeding probability of 50-year. However, intensity plays no role in Japan's displacement calculation, and the calculation result of displacement of Japanese code is less than other three codes.


2019 ◽  
Vol 10 (1) ◽  
pp. 30-42
Author(s):  
Abu Bakar Nabilah ◽  
Chan Ghee Koh ◽  
Nor Azizi Safiee ◽  
Nik Norsyahariati Nik Daud

Kuala Lumpur, Malaysia, is considered to be safe against an earthquake threat. However, tremors felt by occupants due to long distance earthquakes from Sumatra has raised concern on building safety in this region. Consequently, Malaysia will adopt the Eurocode 8 for seismic design. The suitability of this code must be studied especially on the threat from far field earthquakes. Thus, site specific hazard assessment has been conducted on seven flexible soil sites in Kuala Lumpur, based on modified time history. The peak ground acceleration (PGA) falls in the category of very low seismicity, however, the amplifications are much higher than recommended by Eurocode 8. The period limits for maximum accelerations are also much higher compared to the value in the code, especially for flexible soils. Adoption of Eurocode 8 for seismic design in this region should be studied to include the effects of high period motions in flexible soils, especially on the amplification factors and its corner periods.


2010 ◽  
Vol 26 (1) ◽  
pp. 63-86 ◽  
Author(s):  
Martha L. Carreño ◽  
Omar D. Cardona ◽  
Alex H. Barbat

A method and a computational tool oriented to assist the damage and safety evaluation of buildings after strong earthquakes is described in this article. The input of the model is the subjective and incomplete information on the building state, obtained by inspectors which are possibly not expert professionals of the field of building safety. The damage levels of the structural components are usually described by linguistic qualifications which can be adequately processed by computational intelligence techniques based on neuro-fuzzy systems what facilitate the complex and urgent tasks of engineering decision-making on the building occupancy after a seismic disaster. The hybrid neuro-fuzzy system used is based on a special three-layer feedforward artificial neural network and fuzzy rule bases and is an effective tool during the emergency response phase providing decisions about safety, habitability, and reparability of the buildings. Examples of application of the computer program are given for two different building classes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xiao-Lei Wang ◽  
Da-Gang Lu

The mean seismic probability risk model has widely been used in seismic design and safety evaluation of critical infrastructures. In this paper, the confidence levels analysis and error equations derivation of the mean seismic probability risk model are conducted. It has been found that the confidence levels and error values of the mean seismic probability risk model are changed for different sites and that the confidence levels are low and the error values are large for most sites. Meanwhile, the confidence levels of ASCE/SEI 43-05 design parameters are analyzed and the error equation of achieved performance probabilities based on ASCE/SEI 43-05 is also obtained. It is found that the confidence levels for design results obtained using ASCE/SEI 43-05 criteria are not high, which are less than 95%, while the high confidence level of the uniform risk could not be achieved using ASCE/SEI 43-05 criteria and the error values between risk model with target confidence level and mean risk model using ASCE/SEI 43-05 criteria are large for some sites. It is suggested that the seismic risk model considering high confidence levels instead of the mean seismic probability risk model should be used in the future.


Sign in / Sign up

Export Citation Format

Share Document