Performance-Based Research of Existing Reinforced Concrete Building Structure Seismic Evaluation and Reinforcement Technology

2014 ◽  
Vol 513-517 ◽  
pp. 3500-3503
Author(s):  
Li Na Pei

Based on the current seismic codes, the elastic capacity calculation under frequent earthquake and ductile details of seismic design should be used for both seismic design of new buildings and seismic evaluation of existing buildings to satisfy the seismic fortification criterion, namely/no damage under frequent earthquake, repairable under moderate earthquake, and no collapse under severe earthquake0. For the evaluation, rebuilding and extending of existing structures which dissatisfy the ductile details of current seismic codes, the elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced while story drift ratio and deformation of component are used as performance targets to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures.

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2021 ◽  
Vol 6 (12) ◽  
pp. 172
Author(s):  
Paraskevi K. Askouni ◽  
George A. Papagiannopoulos

This paper investigates the seismic behavior of a class of mixed reinforced concrete­–­steel buildings. In particular, mixed buildings constructed by r/c (reinforced concrete) at their lower story(ies) and structural steel at their upper story(ies) are studied from the viewpoint of their wide application in engineering praxis. The need to investigate the seismic behavior for this type of mixed buildings arises from the fact that the existent literature is small and that modern seismic codes do not offer specific seismic design recommendations for them. To study the seismic behavior of mixed r/c-steel buildings, a 3-D numerical model is employed and five realistic r/c-steel mixed buildings are simulated. Two cases of the support condition, i.e., fixed or pinned, of the lowest steel story to the upper r/c one are examined. The r/c and steel parts of the mixed buildings are initially designed as separate structures by making use of the relevant seismic design guidelines of Eurocode 8, and then the seismic response of these buildings is computed through non-linear time-history analyses. The special category of near-fault seismic motions is selected in these time-history analyses to force the mixed r/c-steel buildings under study to exhibit a strong non-linear response. Seismic response indices in terms of inter-story drift ratio, residual inter-story drift ratio and peak floor absolute accelerations are computed. The maximum values of these indices are discussed by comparing the two aforementioned kinds of support conditions and checking the satisfaction of specific seismic performance limits. Conclusions regarding the expected seismic behavior of mixed r/c-steel buildings under near-fault seismic motions are drawn. Finally, the need to introduce specific design recommendations for mixed r/c-steel buildings in modern seismic codes is stressed.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


A series of Indonesian earthquakes, especially from Sumatra caused vibration on buildings in Peninsular Malaysia like Kuala Lumpur and Penang Island. In East Malaysia, Sabah state has been classified as a region with active local seismic fault. A moderate earthquake with Mw6.1 was occurred in Ranau on 5th June 2015 and caused damage on buildings either the structural or non-structural members. Hence, the implementation of seismic design on new buildings is important to ensure public safety. However, such action has its own pro and contra especially when dealing with cost. Therefore, current research work presents the influence of seismic design consideration on the increment of cost for steel reinforcement. For that purpose, a four storey reinforced concrete school building was generated and used as basic model for analysis, design, and taking off. Two level of seismicity representing by the reference peak ground acceleration, αgR equal to 0.07g and 0.10g has been taken into account in the structural analysis and seismic design process. Besides, three soil type namely as soil type A, soil type C, and soil type E also has been considered as variable parameter. Based on result, total steel tonnage in beams for models considering seismic design increases around 14% to 119% higher than the model without seismic design. For columns, the increment is around 13% to 155%. Generally, total cost of steel used as for concrete reinforcement of the whole structure increases around 13% to 131% depending on the level of seismicity and soil type.


Prostor ◽  
2021 ◽  
Vol 29 (1 (61)) ◽  
pp. 42-55
Author(s):  
Cengiz Özmen

Seismic codes include strict requirements for the design and construction of mid-rise reinforced concrete residential buildings. These requirements call for the symmetric and regular arrangement of the structural system, increased cross-sections for columns, and the introduction of shear walls to counteract the effects of lateral seismic loads. It is challenging for architects to reconcile the demands of these codes with the spatial arrangement and commercial appeal of their designs. This study argues that such reconciliation is possible through an architectural analysis. First, the effectiveness of applying the seismic design principles required by the codes is demonstrated with the comparative analysis of two finite element models. Then three pairs of architectural models, representing the most common floor plan arrangements for such buildings in Turkey, are architecturally analyzed before and after the application of seismic design principles in terms of floor area and access to view. The results demonstrate that within the context defined by the methodology of this study, considerable seismic achievement can be achieved in mid-rise reinforced concrete residential buildings by the application of relatively few, basic design features by the architects.


2000 ◽  
Vol 16 (1) ◽  
pp. 141-162
Author(s):  
S. K. Ghosh

U.S. seismic codes are undergoing profound changes as of this writing. Changes from the 1994 to the 1997 edition of the Uniform Building Code (UBC) (ICBO 1994, 1997) are many and far-reaching in their impact. The 1997 edition of the National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions for Seismic Regulations for New Buildings (BSSC 1998) contains further evolutionary changes in seismic design requirements beyond those of the 1997 UBC. The latter document will form the basis of the seismic design provisions of the first edition of the International Building Code (IBC), to be published in the spring of 2000. This paper first discusses the major changes that have been made in the concrete-related provisions from the 1994 to the 1997 edition of the UBC. The paper gives background to these changes, provides essential details on them, and indicates how they have been or how they are going to be incorporated (at times with significant modifications) into the 1997 NEHRP Provisions and the 2000 IBC. The newly published ACI 318-99, Building Code Requirements for Structural Concrete (ACI 1999), is going to be adopted by reference into the 2000 IBC. This entails further changes in concrete-related provisions beyond the 1997 UBC. Some of the more important of these changes are discussed here. A small number of amendments and additions to the ACI 318-99 provisions are going to be included in the 2000 IBC. The more important of these are also outlined in this paper.


Multipurpose hall is a public building of people assembly for various function and activities. It can be converted to be a temporary shelter during disaster like flood and earthquake. After experiencing tremors from both local and distant earthquakes, the time has come to implement the seismic design to new buildings in Malaysia to ensure public safety. The implementation of seismic design also affecting the cost of construction, especially materials. Therefore, this paper presents the taking off results for reinforced concrete multipurpose hall building with seismic design. In this study two parameters namely as soil type and concrete grade had been considered as design variable. Result from design and taking off demonstrated that the amount of steel reinforcement is strongly influenced by both parameters. The usage of steel for reinforced concrete buildings with seismic design is estimated to increase around 3% to 59% depend on soil type and concrete grade. Results also demonstrated that higher concrete grade require lower amount of steel as reinforcement.


2011 ◽  
Vol 368-373 ◽  
pp. 1509-1512
Author(s):  
Jiao Rong Ma

This study focuses on the reliability assessment of buildings subjected to moderate earthquake loadings. The safety of the buildings is expressed with criteria of both global level and member level summarized from the deformation-based design theories in the overseas codes. The inter-story drift ratio is chosen as the key criteria. An allowable inter-story drift ratio of repairable level is proposed for seismic design, and a numerical example is examined. The results indicate that the allowable inter-story drift can effectively control the damage level under moderate earthquake.


Author(s):  
Masami Oshima ◽  
Takashi Kase

After Hyogo South Area earthquake, a new seismic design method considering non-elastic deformation behavior is established against Level 2 earthquake (Safety Shutdown Earthquake) in the Seismic Design Code of High-pressure Gas Facilities in Japan. In this paper, this method is applied for an evaluation of existing structures supporting loading-arms in LNG Receiving Terminal. A procedure of pre-earthquake seismic upgrading and modification of the structures that are supported by platforms and supporting loading-arms is introduced. In this evaluation, the seismic loads taking into account of interaction among platforms, structures, and loading-arms are analyzed as total systems. And yield strength design method is applied. Then for the seismic design of loading-arms, floor response spectrums on the installation level are presented. After upgrading the platforms in this case, seismic evaluation of loading-arms based on this study will be performed. So the effect of changing its stiffness is studied. Also to evaluate the dynamic loads subjected to the loading-arms, they are compared with seismic loads that are derived from modified static coefficient method of the seismic design code. Thus with studies of vibration characteristics as total systems, it is possible to make effective and economical countermeasures for pre-earthquake seismic upgrading and modification of the structures and loading-arms.


Author(s):  
Amthal Hakim ◽  
Adnan Masri

All new buildings nowadays have to be designed and executed to overcome any imposed type of loading (lateral/vertical). On a universal scale, the stock of buildings built before 1980’s is believed to be many times more than the number of newer buildings in most urban cities. In Beirut, as an example, a large proportion of Reinforced Concrete (RC) structures were constructed in the absence of mandatory earthquake design requirements, and unquestionably recognized as the type of construction most vulnerable to earthquakes. The performed research focused on how to evaluate the status of old building and how to design and execute the convenient seismic strengthening schemes. A case study has been selected to implement the evaluation process and design proposals. Conventional seismic upgrading technique has been assessed like the addition of shear walls in addition to more innovative approach which is the installation of steel bracing system. The strengthening schemes proposed aimed to create an ideal harmonization of the technical, economic and social aspects of the issue in hand. Analysis of the three structural systems (existing, modified with shear walls and with bracing systems) has been performed using the ETABS software including static equivalent, dynamic and pushover analyses. The research sorted out with a comparison between the systems based on different structural criteria followed by general recommendations and suggestions.


Sign in / Sign up

Export Citation Format

Share Document