Research on Numerical Simulation of Dynamic Pressure for Stress Sensibility Coal Seam

2011 ◽  
Vol 383-390 ◽  
pp. 2293-2299
Author(s):  
Yun Hong Ding ◽  
Bao Hui Wang ◽  
Xiang Zhen Yan

Based on the orthotropic physical properties of coal cleats, the fluid-solid coupling model for stress sensibility coal seams is established. The equations of the coupling model are solved by using the finite element method. The history matching for JS-3 well in Ordos basin is carried on by using the coupling model. The comparison between calculated results based on the coupling model and the measured values indicates their good agreement, which verifies the accuracy and rationality of the model. The effect of the permeability orthotropic coefficient of coal cleats on the pressure distribution in coal seams is analyzed. The results show that the pressure along the butt cleats direction increases with permeability orthotropic coefficient increasing; The pressure along the face cleats decreases with permeability orthotropic coefficient increasing between 0m~30m and 170m~200m, whereas both increases from 30m to 170m.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Elia Iseli ◽  
Eliott Guenat ◽  
Roger Tresch ◽  
Jürg Schiffmann

Abstract A finite groove approach (FGA), based on the finite element method (FEM), is used for analyzing the static and dynamic behavior of spiral-grooved aerodynamic journal bearings at different eccentricities, number of grooves, and compressibility numbers. The results of the FGA are compared with the narrow-groove theory (NGT) solutions. For the rotating-groove case, a novel time-periodic solution method is presented for computing the quasi-steady-state and dynamic pressure profiles. The new method offers the advantage of avoiding time-consuming transient integration, while resolving a finite number of grooves. The static and dynamic solutions of the NGT and FGA approach are compared, and they show good agreement, even at large eccentricities (ε=0.8) and high compressibility numbers (Λ = 40). Stability maps at different eccentricities are presented. At certain operation points, a stability decrease toward larger eccentricities is observed. The largest stability deviations of the NGT from the FGA solutions occur at large groove angle, low number of grooves, and large compressibility numbers.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


2011 ◽  
Vol 383-390 ◽  
pp. 5669-5673
Author(s):  
Song Ling Wang ◽  
Zhe Sun ◽  
Zheng Ren Wu

For the large centrifugal fan impeller, its working condition generally is bad, and its geometry generally is complex. So its displacements and stresses distribution are also complex. In this paper, we can obtain the fan impeller’s displacements and stresses distribution accurately through numerical simulation in G4-73 type centrifugal fan impeller using the finite element method software ANSYS. The calculation result shows that the maximum total displacement of the impeller is m, it occurs on the position of the half of the blade near the outlet of the impeller; and the maximum equivalent stress of the impeller is 193 MPa, it occurs on the contacted position of the blade and the shroud near inlet of the impeller. Furthermore, check the impeller strength, the result shows that the strength of the impeller can meet the requirement.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


Sign in / Sign up

Export Citation Format

Share Document