Preparation of Fe3+/Ag+ Co-Doped Nanometer TiO2 Photocatalyst with Sol - Gel Auto-Igniting Method

2011 ◽  
Vol 399-401 ◽  
pp. 1721-1724
Author(s):  
Zai Feng Shi ◽  
Shu Guo

To study the preparation of Fe3+/Ag+ co-doped TiO2 photocatalyst with sol-gel auto-igniting method, TiO2 powder was prepared with TiCl4 as raw material and the photocatalytic activity of doped TiO2 was examined with methylene blue (MB) as water samples, and a 15w low pressure mercury lamp as light source. Results showed that: the TiO2 co-doped with 0.02% (molar ratio) of Fe3+ and 0.5% (molar ratio) of Ag+ gives the highest photocatalytic activity. The according photodegradation rate constant of MB is 1.33 and 1.10 times of that with TiO2 and Fe/TiO2 separately.

2016 ◽  
Vol 23 (02) ◽  
pp. 1550099
Author(s):  
QIONGZHI GAO ◽  
XIN LIU ◽  
WEI LIU ◽  
FANG LIU ◽  
YUEPING FANG ◽  
...  

In this work, the titanium dioxide ([Formula: see text]) nanofilms co-doped with [Formula: see text] and [Formula: see text] ions were successfully fabricated by the sol–gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of [Formula: see text] and [Formula: see text] ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure [Formula: see text] nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with [Formula: see text] and [Formula: see text] ions were fabricated at the molar ratio of 3:1 ([Formula: see text]:[Formula: see text]), they exhibited the best photocatalytic activity after the heat treatment at [Formula: see text]C for 2[Formula: see text]h. The wettability property test indicated that the [Formula: see text] nanofilms co-doped with [Formula: see text] and [Formula: see text] ions in the molar ratio 3:1 owned an excellent hydrophilic property.


2011 ◽  
Vol 328-330 ◽  
pp. 1507-1511 ◽  
Author(s):  
Min Wang ◽  
Li Fang Zhang ◽  
Hai Yan Luan

FeVO4 photocatalysts were synthesized by complexing Sol-Gel method using citric acid as chelate and characterized with X-ray diffraction (XRD), scanning electron microsoope(SEM, specific surface area (BET). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under visible light. It was found that the sample prepared with the molar ratio of citric acid to metal inons be 2:1, pH=7 and calcinated under 750°C for 4 hours was pure triclinic FeVO4 phase. In the experimental conditions used, the FeVO4 calcined at 750°C had highest photocatalytic activity with the photodegradation rate was about 85% or so in 150min under 250W halogen lamp.


2011 ◽  
Vol 393-395 ◽  
pp. 1181-1184
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Qi Xing

Nd-doped Cu11O2 (VO4)6 photocatalyst was synthesized by complexing Sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy Dispersive X-Ray Spectroscopy(EDX). The photocatalytic activity of Nd-doped Cu11O2 (VO4)6 was evaluated by photocatalytic degradation of methyl orange (MO) solution under UV-light. It revealed that the Nd-doped Cu11O2 (VO4)6 prepared with the molar ratio of citric acid to metal inons be 2:1, Nd/Cu molar ratio of 2%, pH=7 and calcinated under 500°C for 4 hours was pure triclinic phase. In this conditions, the sample had highest photocatalytic activity with the photodegradation rate was about 95.73% or so in 60min under 20W ultraviolet lamp.


2015 ◽  
Vol 1123 ◽  
pp. 227-232 ◽  
Author(s):  
Iqriah Kalim Susanto ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.


2014 ◽  
Vol 875-877 ◽  
pp. 251-256 ◽  
Author(s):  
Lin Sun ◽  
Rong Shao ◽  
Lan Qin Tang ◽  
Zhi Dong Chen

Ag/ZnO nanocomposite photocatalysts with high photocatalytic performance were successfully synthesized via a facile sol-gel method. The prepared Ag/ZnO products were characterized by XRD, SEM, EDS, FT-IR, BET surface area, TG and DSC. Photodegradation experiments of the samples were carried out by choosing Methylene Blue (MB) as a model target under UV irradiation with homemade photocatalytic apparatus. Among these products, when the molar ratio of Ag to ZnO was fixed at 0.07 and the calcination temperature was around 450 °C, the obtained samples exhibited the highest photocatalytic activity.


2013 ◽  
Vol 774-776 ◽  
pp. 864-867
Author(s):  
Zai Feng Shi ◽  
Su Min Zhang ◽  
Su Guo

To investigate the effects of sol pH value and water content on photocatalytic activity of TiO2 prepared with sol-gel auto-igniting synthesis (SAS) method, TiO(NO3)2 was prepared with TiCl4 as raw material and used as precursor of TiO2. By changing sol pH value and water content, different TiO2 powders were prepared and characterized with XRD, SEM and photodegradation of methylene blue (MB). Results indicated that TiO2 presented the highest photocatalytic activity while sol pH value and mass fraction of water were adjusted to 7 and 50% respectively while the mole ratio of n (TiCl4): n (citric acid): n (ammonium nitrate) was fixed as 1: 1: 3. The TiO2 powders were confirmed as loose and porous anatase type with particle size of 15 nm by SEM and XRD.


2014 ◽  
Vol 989-994 ◽  
pp. 531-535
Author(s):  
Yin Chen ◽  
Xiao Jun Ma

Mn-doped TiO2nanocrystal photocatalysts were prepared by the sol-gel method using MnSO4·H2O as manganese source. The catalysts were characterized by XRD, SEM, EPR, UV-Vis, their photocatalytic activity for methylene blue (MB) degradation was investigated. The results showed that Mn was doped into the crystal lattice of TiO2, and had no influence on TiO2crystal structure; the size of TiO2nanoparticle gradually decreased with Mn doping concentration increasing. The Mn-doped TiO2catalysts have enhanced absorption in the visible light region, and its visible light absorptivity increased with Mn doping concentration increasing. The UV-Vis showed the Mn-doped TiO2showed higher photocatalytic activity than the undoped TiO2for methylene blue degradation under visible light irradiation. It is also found that the MB photodegradation rate of Mn-doped TiO2improved by 46% than that of the undoped TiO2.


2019 ◽  
Vol 268 ◽  
pp. 07005
Author(s):  
Ngoc Diem Trinh Huynh ◽  
Kieu Duyen Vo ◽  
Thao Vy Nguyen ◽  
Minh Vien Le

A series of TiO2/SiO2 photocatalysts were successfully synthesized by the sol-gel method. The TiO2/SiO2 monolith was also synthesized by dip-coating process. The crystalline structure of TiO2/SiO2 powders was identified as pure anatase. The photocatalytic activity of the TiO2/SiO2 powders was evaluated by photodegradation of 20 ppm methylene blue (MB) using a 26W lamp which has the wavelength in the visible light region under different Ti: Si molar ratios and calcination temperatures. The TiO2/SiO2 powders which have Ti: Si molar ratio of 85:15 (TS15) and calcined at 550tC showed the highest photodegradation yield of 84 % after 3h irradiation. Furthermore, the 550˚C calcined TS15 monolith performed the MB degradation yield of 88.9 % after 3h irradiation and its photoactivity still remained after 4 recycle times. The results of this study demonstrated that the TS15 monolith photocatalyst has a reasonable efficiency in the degradation of methylene blue, it could be a promising photocatalyst for removal and degradation of organic pollutants.


2011 ◽  
Vol 239-242 ◽  
pp. 1045-1048
Author(s):  
Xu Dong Lu ◽  
Cheng Zhi Jiang

Pure TiO2, Sm3+and Gd3+co-doping TiO2have been prepared by sol-gel method and characterized by the techniques such as XRD and SEM. The photocatalytic degradation of methylene blue (MB) in aqueous solution was used as a probe reaction to evaluate Pure TiO2, Sm3+and Gd3+co-doping TiO2photocatalytic activity. The matrix distortion of TiO2increases after co-doping of Sm3+and Gd3+are clearly observed. The results show that co-doping of Sm3+and Gd3+inhibits the phase transformation of TiO2from anatase to rutile, decreases the diameter of TiO2nano-particles and significantly enhance the photocatalytic activity of TiO2. When the co-doped amounts for Sm3+and Gd3+are 0.1% and 0.2%, its degradation rate reaches 99%.


2011 ◽  
Vol 361-363 ◽  
pp. 1598-1601
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Hai Yan Luan

Cu11O2 (VO4)6 powders have been synthesized by complexing Sol-Gel method using citric acid as chelate, calcined at different temperature without using any template. Techniques of X-ray diffraction (XRD) and scanning electron microscope (SEM) have been employed to characterize the as-synthesized materials. The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under UV-light. It revealed that temperature values can influence significantly on the morphologies and structures of the products.It also found that the sample prepared with the molar ratio of citric acid to metal inons be 2:1, pH=7 and calcinated under 500°C for 4 hours was pure triclinic Cu11O2 (VO4)6 phase.In this conditions, the sample had highest photocatalytic activity with the photodegradation rate was about 78.9% or so in 60min under 20W ultraviolet lamp.


Sign in / Sign up

Export Citation Format

Share Document