Studies on Shielded Active Gas Forge Welded API 5CT L80 Material at Different Cooling Rates

2011 ◽  
Vol 409 ◽  
pp. 871-876 ◽  
Author(s):  
P. Vinothkumar ◽  
S.M. Ganesan ◽  
Jan K. Solberg ◽  
B. Salberg ◽  
P.T. Moe

Shielded Active Gas Forge Welding (SAG-FW) is a solid state bonding process in which two mating surfaces are locally heated and forged together to form a bond. SAG-FW has so far mainly been used to join materials for pipe-line and casing applications. The present study has been conducted on an API 5CT L80 grade material in a prototype forge welding machine. Small-scale pipe specimens have been extracted from the wall of the production casing. The SAG-FW process is completed within a few seconds of heating and forging followed by controlled cooling. The microstructure of the weld is determined by the processing parameters. In this paper, microstructure results for SAG-FW processed L80 material have been obtained for a range of cooling rates and systematically compared with microhardness values. Microstructure observations at different regions of the weld have been made. Faster heating rate and controlled cooling resulted in a mixture of non equilibrium microstructures, but satisfactory mechanical properties have been obtained for optimized processing parameters.

2021 ◽  
Vol 67 ◽  
pp. 35-45
Author(s):  
Shuangjie Zhang ◽  
Wei Wang ◽  
Shibo Ma ◽  
Qiang Li

2013 ◽  
Vol 302 ◽  
pp. 136-139 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ji Ung Choi

In the solid state bonding, joint are made by pressing surfaces together at high temperature so that a bond grows across the interface by atomic diffusion. In order to satisfy both requirements of thermal and mechanical properties of aerospace vehicle, conductive CuCrZr alloy was bonded to duplex steel with high strength. Solid state bonding was performed at 3 different pressure conditions and at temperatures of 850°C and 950°C. Microstructural and mechanical evaluation was performed to obtain the optimum joining condition.


2007 ◽  
Vol 544-545 ◽  
pp. 183-186 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Yeong Moo Yi

The surface oxidation behavior was investigated over a range of solid state bonding condition of the Ti-6Al-4V ELI alloy. Since the oxides at the bonding interface may prevent the materials from complete bonding, it is important to understand the oxidation behavior at solid state bonding condition. The activation energy of oxidation of Ti-6Al-4V ELI is estimated to be 318 KJ/mol in an environment of solid state bonding process. For Ti-6Al-4V ELI alloy, strucutral integrity of bonding interface without oxides have been obtained at 850°C applying pressure of 3MPa for 1 hour. Solid state diffusion bonding of Ti-15V-3Cr-3Sn-3Al alloy was also obtained under a pressure of 6MPa for 3 hours at 925°C.


2018 ◽  
Vol 157 ◽  
pp. 437-446 ◽  
Author(s):  
Bijun Xie ◽  
Mingyue Sun ◽  
Bin Xu ◽  
Chunyang Wang ◽  
Dianzhong Li ◽  
...  

2006 ◽  
Vol 116-117 ◽  
pp. 501-504 ◽  
Author(s):  
Gonasagren Govender ◽  
L. Ivanchev ◽  
N. Jahajeeah ◽  
R Bëan

The Council for Science and Industrial Research has developed and patented a rheocasting process. The process involves the preparation of semi-solid slurries from liquid metal, by controlled cooling and MHD stirring using induction coils. An industrial prototype was designed and built to test the system in an industrial environment. A semi-solid high pressure die casting cell was set up with an industrial partner and the system was tested under normal production conditions. The production cell consisted of the CSIR rheocasting system, a six axis robot, dosing furnace and 400 ton H-400SC shot controlled Bühler HPDC machine. An engine mounting bracket originally designed for liquid HPDC was redesigned for SSM forming (casting) taking into consideration the flow and thermal behaviour of semi-solid casting process, the function of the component and the required mechanical properties. Although a full production run was not completed due to an ancillary equipment failure, sufficient castings were produced to perform preliminary evaluation of the components. The processing parameters used were, die temperature of 250°C, SSM casting temperature of 580°C ±1Cº and a piston injection velocity of 0.13 m/s. Initial evaluation showed evidence of casting defects due to a combination of factors: die design/manufacture, casting parameters and poor foundry practice. From the mechanical tests it was evident that if the die design, casting parameters and foundry practice are optimized components with adequate mechanical properties can be reliably produced.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Chu-Hsuan Sha ◽  
Chin C. Lee

Pure gold (Au) is used as a bonding medium to bond silicon (Si) chips to alumina substrates. The bonding process is performed at 260 °C with only 150 psi (1.0 MPa) static pressure applied. This is a solid-state bonding without any molten phase involved. The Au layer plated on alumina is ductile enough to deform for its surface to mate with the thin Au layer coated on Si. Au atoms on both sides of the bond line are brought within atomic distance and bonding is achieved. The ductile Au joint also accommodates the significant mismatch in coefficient of thermal expansion (CTE) between Si and alumina. Scanning electron microscope (SEM) evaluations show that nearly perfect joints are achieved and no voids are observed. Five samples are shear tested. They all pass the MIL-STD-883G standard. This bonding technique can be applied to bonding any two objects that can be coated with smooth Au layers. The 260 °C bonding temperature is compatible with typical reflow temperature of Sn3.5Ag solders used in electronic industries.


Sign in / Sign up

Export Citation Format

Share Document