Application of CSIR Rheocasting Technology for the Production of an Automotive Component

2006 ◽  
Vol 116-117 ◽  
pp. 501-504 ◽  
Author(s):  
Gonasagren Govender ◽  
L. Ivanchev ◽  
N. Jahajeeah ◽  
R Bëan

The Council for Science and Industrial Research has developed and patented a rheocasting process. The process involves the preparation of semi-solid slurries from liquid metal, by controlled cooling and MHD stirring using induction coils. An industrial prototype was designed and built to test the system in an industrial environment. A semi-solid high pressure die casting cell was set up with an industrial partner and the system was tested under normal production conditions. The production cell consisted of the CSIR rheocasting system, a six axis robot, dosing furnace and 400 ton H-400SC shot controlled Bühler HPDC machine. An engine mounting bracket originally designed for liquid HPDC was redesigned for SSM forming (casting) taking into consideration the flow and thermal behaviour of semi-solid casting process, the function of the component and the required mechanical properties. Although a full production run was not completed due to an ancillary equipment failure, sufficient castings were produced to perform preliminary evaluation of the components. The processing parameters used were, die temperature of 250°C, SSM casting temperature of 580°C ±1Cº and a piston injection velocity of 0.13 m/s. Initial evaluation showed evidence of casting defects due to a combination of factors: die design/manufacture, casting parameters and poor foundry practice. From the mechanical tests it was evident that if the die design, casting parameters and foundry practice are optimized components with adequate mechanical properties can be reliably produced.

Author(s):  
Yong Phil Jeon ◽  
Amir Bolouri ◽  
Hyung Yoon Seo ◽  
Jong Deok Kim ◽  
Chung Gil Kang

The latest trend in the cell phone component industry to use aluminium and magnesium alloys has resulted in the advanced processing technologies. Semi-solid forming process that is advantageous for the mass production of thin parts with complex shapes have been of interest as a promising tool for near net-shape manufacturing. This study describes a semi-solid forming process for the development of a 1 mm-thick cell phone case by using the rheological material prepared by electromagnetic stirring equipment. Thus, a new type of die design for indirect rheoforging was proposed to efficiently control the primary α-Al phase particles in the thin part under rheological conditions. Their microstructure and mechanical properties were investigated and compared to parts produced without electromagnetic stirring. Those products fabricated by electromagnetic stirring had better mechanical properties and globular microstructures than those fabricated without electromagnetic stirring. Several processing parameters such as punch velocity (30 mm/s), punch pressure (75–250 MPa), stirring time (10 s), and solid fraction (0–20%) were used. The optimal condition that resulted in a defect-free component with the improved mechanical properties was explained and discussed.


2008 ◽  
Vol 141-143 ◽  
pp. 219-224 ◽  
Author(s):  
Antonio Forn ◽  
Sergi Menargues ◽  
Enric Martín ◽  
Josep A. Picas

This work is a contribution to improve the knowledge of components behavior produced by semi-solid processes particularly the Sub-Liquidus-Casting process. Die design was supported by using the Procast simulation program. The effect of the different variables of the process in structural integrity of the product has been described and analyzed. The components were produced using A356 alloy formed on a pilot plant with a 400 Ton THT press. The components study was made by RX, metallographic analysis and mechanical tests. The effects of T5 and T6 heat treatments were also studied.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


2016 ◽  
Vol 879 ◽  
pp. 530-535
Author(s):  
Xiao Gang Fang ◽  
Shu Sen Wu ◽  
Shu Lin Lü

Mg-Zn-Y alloys containing a thermally stable icosahedral quasicrystal phase (I-phase) will have wide application future on condition that primary α-Mg dendrite and the I-phase can be refined during the casting process. In this research, the microstructure and mechanical properties of the rheo-squeeze casting (RSC) Mg-6Zn-1.4Y alloys have been investigated. The Mg alloy melt was exposed to ultrasonic vibration (USV) with different acoustic power densities from 0 W/mL to 9 W/mL, and then the slurry was formed by squeeze casting. The results show that good semi-solid slurry with fine and spherical α-Mg particles could be obtained with the acoustic power density of 6 W/mL, and the average grain size and shape factor of primary α-Mg were 32 μm and 0.76, respectively. Meanwhile the coarse eutectic I-phase (Mg3Zn6Y) was refined obviously and dispersed uniformly. Compared with the samples without USV, the tensile strength and elongation of the RSC casting samples with 6 W/mL acoustic power density were elevated by 10.6% and 55.5%, respectively.


2019 ◽  
Vol 285 ◽  
pp. 429-435 ◽  
Author(s):  
Song Chen ◽  
Da Quan Li ◽  
Fan Zhang ◽  
Min Luo ◽  
Xiao Kang Liang ◽  
...  

There are two new processes to development automobile structural components which have certain thickness. In the present paper, taking a main bearing cap product as an example, analyses die design by comparing the experimental and computational numerical simulation results. For the main bearing cap, product structure and mold design were designed to be suitable for characters of SSM die casting and squeeze process. Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity and solid fraction phase make the flow condition more laminar than liquid squeeze casting with the partial fill experiment. And compared with squeeze casting process, the globular shape grain size is smaller than dendritic structure. And mechanical property result shows that the elongation of SSM die casting can achieve more than twice than squeeze casting.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


2021 ◽  
Vol 3 (1) ◽  
pp. 29
Author(s):  
Lai Dang Giang ◽  
Nguyen Anh Tuan ◽  
Dao Van Luu ◽  
Nguyen Vinh Du ◽  
Nguyen Manh Tien

The mechanical properties of thixoextrusion components can be improved by controllable processing parameters such as the solid fraction of alloy, holding time, punch velocity, heat treatment and die temperature. In this study, the effects of thixoforming parameters on the microstructures and mechanical properties of thixoextrusion ADC12 alloy Aptomat Contact are studied. ADC12 has excellent castability with high fluidity and low shrinkage rate, so it is widely used in industry, especially in automotive and motorcycle engine part casting. It is a near eutectic alloy with high strength and low ductility (1%). The optimization parameters mechanical properties were investigated by changing the punch velocity, specimen temperature and holding time. The results also indicated optimal value at punch velocity (15 mm/s), specimen temperature (560 °C) and holding time (5 min) which was changed microstructure from eutectic dendrite to globular grain, increasing the ductility (3.3%) of this alloy during the semi-solid forming process while the remaining mechanical properties lead to an increase in the quality of finished parts.


2021 ◽  
Author(s):  
mohsen ostadshabani ◽  
Amir Baghani ◽  
Mohammad Reza Rahimipour ◽  
Mansour Razavi ◽  
Mohammad Zakeri ◽  
...  

Abstract Applying aluminum composite in the defense, aerospace and automotive industries depends on how they behave during the elasto-plastic form change. In addition to the factors responsible for changing the form of the alloy, many other factors have an impact on the behavior of the composite form change. In this study, the effect of casting type on the mechanical properties of Al-Si nano composites has been investigated. Due to the proper distribution of reinforcing particles, tensile strength in compo casting sample in semi-solid state is higher than sand casting and squeeze casting. In all samples, the tensile strength of the heat-treated samples has increased by about 30%. Tensile strength in compo casting sample in semi-solid state was obtained with higher nano particle reinforcing particles, which can be explained by the fact that the percentage of elongation in micro samples was lower than that of nano composite samples.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1414
Author(s):  
Yong Guk Son ◽  
Sung Soo Jung ◽  
Yong Ho Park ◽  
Young Cheol Lee

This study reports the microstructural changes and mechanical properties of high-strength aluminum alloy chips prepared in the semi-solid state at different temperatures, pressures, and holding times. In semi-solid processes, these processing parameters must be optimized because they affect the microstructure and mechanical properties of the chips. In microstructural analysis, these parameters clearly influenced the spheroidization of the aluminum matrix. The aluminum matrix was uniformly spheroidized after semi-solid processing, and the densities of the final samples increased with the holding time. After 30 min holding time at a given temperature, the density approached the theoretical density, but the compressive strength of the samples seriously deteriorated. Meanwhile, fracture surface investigation revealed a deformed Mg2Si phase, which is formed through a eutectic reaction. The strength of this phase significantly decreased after increasing the holding time of the semi-solid processing from 10 to 30 min. Therefore, deformation of the Mg2Si phase caused by diffusion of aluminum into this phase can be a key factor for the decrease in the mechanical properties of samples fabricated with 30 min holding time.


Sign in / Sign up

Export Citation Format

Share Document