Study on Potential Ecological Risk Assessment of Sediment from the Yangtze River (Chongqing Downtown Section) in China

2011 ◽  
Vol 414 ◽  
pp. 262-267 ◽  
Author(s):  
Wen Bing Ma ◽  
Fei Wang ◽  
Qin Zhai ◽  
Xing Yang ◽  
Yu Zhou ◽  
...  

The potential ecological risk index,proposed by Hakanson, was employed for evaluating the heavy metal contamination of the Yangtze River sediment in Chongqing downtown section. Basing on the analysis of last fifteen years monitored data from two national monitoring sections, the results indicated that: The potential ecological risk of the Yangtze River Chongqing downtown section was classified as moderate. The sequence of potential ecological risk was Zn< Pb (As) < As (Pb) < Cu < Cd< Hg, while the concentration of heavy metal in the sediment was Zn> Cu >Pb> As > Cd > Hg. The concentrations of Cd and Cu had significant correlation, Hg should be taken into prior consideration for pollution control and reduction due to its highest potential ecological risk. The RI in 2005 was highest, Hg contributed the most. All the heavy metal except for Pb had distinctive variance, but the variance of RI was not significant annually, It might carried the connotation of little difference on Pb emission amount. According to the location of monitoring site factor variance analysis, it implied that only the potential ecological risk of As and Cd varied significantly.

2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


2014 ◽  
Vol 14 (6) ◽  
pp. 1599-1610 ◽  
Author(s):  
X. Jiang ◽  
W. X. Lu ◽  
H. Q. Zhao ◽  
Q. C. Yang ◽  
Z. P. Yang

Abstract. The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.


2020 ◽  
Vol 12 (7) ◽  
pp. 2803 ◽  
Author(s):  
Yanyan Jia ◽  
Xiaolan Tang ◽  
Wei Liu

The comprehensive application of ecosystem service value (ESV) and ecological risk index (ERI) assessment can provide better decision support for regional ecological environment protection. Based on the remote sensing image data of Wuhu city of 1995, 2005 and 2016, the paper analyzed the spatial-temporal evolution of ESV and ERI in Wuhu city and its associated characteristics using an ESV, ERI assessments and a bivariate spatial autocorrelation method. The results showed that (1) the total ESV of Wuhu city continued to decline from 1995 to 2016, with a decrease of US$ 363.664 million. The total ESV per unit area of the sampling plot decreased, and the high-value was mainly distributed in areas within 5–10 km along the Yangtze River floodplain. (2) Wuhu city was mainly dominated by a relatively low ERI and medium ERI from 1995 to 2016. The high-value areas were mainly distributed in the mainstream of the Yangtze River, and the overall ERI improved. (3) There was a positive spatial correlation between the total ESV per unit area and ERI in Wuhu city, and these areas were mainly distributed in the Yangtze River mainstream region. According to this research, it is necessary to pay attention to the protection of wetland and forest landscapes, strengthen wetland ecological protection based on the Yangtze River and protect and restore natural mountain forests, all of which play important roles in improving the ecosystem service function of Wuhu city and protecting the ecological environment of the Yangtze River. We should act on that knowledge, and produce effective environmental regulations and habitat restoration efforts that improve the ESV and reduce the ERI. The findings of the study can serve as a reference for the management and protection of ecological environments in river-crossing cities.


2019 ◽  
Vol 102 ◽  
pp. 246-251 ◽  
Author(s):  
Yan Feng ◽  
Qian Bao ◽  
Chen Yunpeng ◽  
Zhao Lizi ◽  
Xiao Xiao

2013 ◽  
Vol 726-731 ◽  
pp. 296-300
Author(s):  
Zhi Gang Chen ◽  
An Ping Wei ◽  
Xiao Hong Zhou

The purpose of this paper is to study the speciation and contents of two types of heavy metals (Cd and Hg) in the sediments in Power Bridge (D1) and Nanshui Bridge (N2) in the middle part of the Ancient Canal in Zhenjiang. The relationship between the speciation of these heavy metals and their environmental factors were described. Morerover, the ecological hazard and trace to the source of these two types of heavy metals was also determined preliminarily. The results showed that (1) the main heavy metal contamination in the sediments of Power Bridge and Nanshui Bridge is Cd, and the average value is 20 mg/Kg, 17 mg/Kg, respectively, which were higher than environmental background value;(2) The peak value of Hg and Cd were near equilibrium in the 0.1-0.2m depth of Sediments; (3) Calculate the individual potential ecological risk index in the sediments of heavy metal element of two sample points both quantity of contents are Cd>Hg. And visible ecological threat of heavy metals were from Cd. After removing the Cd value, the RI value showed that ecological harm index basically below mild ecological harm degree.


2013 ◽  
Vol 641-642 ◽  
pp. 211-214
Author(s):  
Zhao Xiang Han ◽  
Zhen Zhu ◽  
Dan Dan Wu

Abstract: In this study we have worked on the evaluation of heavy metal contamination in the sediments taken from the Jiangsu lagoon and thereby used the Enrichment factor (EF), Pollution load index (PLI), Geoaccumulation index (Igeo), Potential ecological risk index (PERI), Potential ecological risk index (PERI), Potential toxicity response index (PTRI) and Risk assessment code (RAC) and the methods of statistical analysis. The average EF of Zn is found to be less than 2, and the average EF of Cu, Cr, Cd, Pb and Ni are found to be greater than 2 in Jiangsu lagoon.The EF for Pb, Cd and Cr are higher along the Jiangsu lagoon and harbor, which reveals the anthropogenic contribution to the increased content of the surface sediments of the Jiangsu coast. PLI values calculated for Yancheng suggest that this zone is appreciably less impacted by metal pollutants than Nantong. Zn (Igeo(mean)<0), as unpolluted to moderately polluted with Cu (0<Igeo(mean)<1), moderately polluted with Ni (1<Igeo(mean)<2), moderate to strongly polluted with Cd (2<Igeo(mean)<3), and strongly polluted with Cr and Pb (3<Igeo(mean)<4). The potential ecological risk indices of Cu, Zn and Ni in 9 stations in Lianyungang coast were lower than 40, which indicated slight potential ecological risk of three metals in 9 stations.Potential ecological risk indices of Cu, Zn and Cd in 9 stations in Yancheng lagoon were lower than 40, which indicated slight potential ecological risk of two metals in 9 stations. The sediments show a medium risk for Cu with PERI value greater than 40 indicating a moderate risk from sediments across the entire Nantong region. The amount of Cu and Ni with low risk, while Cd with moderate, with high risk in Lianyungang coast. Cu, Zn and Cd with low risk, while Cr and Ni with moderate risk, but, the Pb with very high risk in Yancheng coast. Cu and Zn with low risk, Cr and Ni with medium risk, Pb,Cd with high risk in Nantong coast.


Author(s):  
Xiuling Li ◽  
Henglun Shen ◽  
Yongjun Zhao ◽  
Weixing Cao ◽  
Changwei Hu ◽  
...  

The Yi River, the second longest river in Shandong Province, China, flows through Linyi City and is fed by three tributary rivers, Beng River, Liuqing River, and Su River in the northeastern part of the city. In this study, we determined the concentrations of five heavy metals (Cr, Ni, Cu, Zn, and Pb) in water, sediment, and aquatic macrophyte samples collected from the junction of the four rivers and evaluated the potential ecological risk of heavy metal pollution. Most of the heavy metals in water were in low concentrations with the water quality index (WQI) below 1, suggesting low metal pollution. The sediments showed low heavy metal concentrations, suggesting a low ecological risk based on the potential ecological risk index (RI) and the geo-accumulation index (Igeo). The aquatic plant species Potamogeton crispus accumulated considerable amounts of heavy metals, which were closely related to the metal concentrations of the sediment. The plant species Salvinia natans also showed an excellent metal accumulation capability. Based on our results, the junction of the four rivers is only slightly polluted in terms of heavy metals, and the plant species P. crispus is a suitable bioindicator for sediment heavy metal pollution.


Sign in / Sign up

Export Citation Format

Share Document