Effects of Microporosity on the Tensile Properties of Aluminum Alloy

2011 ◽  
Vol 422 ◽  
pp. 627-631 ◽  
Author(s):  
Xie Hua Li ◽  
Li Zi He ◽  
Yi Heng Cao ◽  
Pei Zhu ◽  
Ya Ping Guo ◽  
...  

The influences of cooling rate, hydrogen inflating time, degassing time, inclusion content on the distribution of pores within the ingot , hydrogen content and the mechanical properties of 1050 aluminum alloy were investigated by tensile test, optical microscope(OM), scanning electron microscope(SEM). With the increasing inflating hydrogen time, the hydrogen content increases, while, the strengths and elongation decrease. With the increasing degassing time, the hydrogen content decreases, while, the strengths and the elongation increase. With increasing cast temperature, the hydrogen content remains constant at first and increases obviously from 7200C to 7600C, while the strengths and the elongation decrease gradually. The crack is mainly originated at outcrop of slip step, inclusion and porosity.

2014 ◽  
Vol 511-512 ◽  
pp. 17-21
Author(s):  
Jian Bing Chen ◽  
Chi Peng ◽  
Dong Hai Cheng ◽  
Dong Xu Cheng ◽  
Yi Ping Chen

LF16 aluminum alloy and Q235 steel were brazed by Zn-Al solder and the Al-Si-Cu solder. Metallographic microscope and scanning electron microscope were used to observe the microstructure of weld joint. The result shows that the strength of the joints, which were welded with Zn-Al solder reached 133.6Mpa. Zn-rich solid solution phase and Al-rich solid solution phase existed in Zn-based solder brazing seam. The Fe element trend was gradual changed, while Al element trended more gently, and generated Fe2Al5 intermetallic compounds in the joints in both the brazing joint of Zn-based and Al-based solder.


2013 ◽  
Vol 785-786 ◽  
pp. 86-90
Author(s):  
D.H. Xiao ◽  
X.X. Li ◽  
X.Z. Wu ◽  
Dan Liu ◽  
Y.S. Zhang

P/M Ti-Al-Mo-V-Ta alpha-beta alloys were processed by hot-pressing sintering technique. The effects of Ta additions on microstructure and properties of the Ti-5Al-4Mo-4V alloys were investigated using X-ray diffraction, optical microscope, scanning electron microscope and mechanical properties tests. The results show that minor Ta addition improves the relative density and the mechanical properties of P/M Ti-5Al-4Mo-4V alloys. After sintering for 4h at 1623 K, the relative density and compression strength of Ti-5Al-4Mo-4V-5Ta alloy are 99.3% and 1950 MPa.


2016 ◽  
Vol 849 ◽  
pp. 801-806
Author(s):  
Hui Li ◽  
Yi Tan Zhang ◽  
Kei Ameyama ◽  
Hai Jun Yang ◽  
Zhi Guo Liu ◽  
...  

According to the theory of meso-structure design, milling powders were blended with un-milled Al particulate to increase ductility. Two kinds of Al particulate-toughened composites were fabricated by using powder metallurgy method, where the mass fraction of B4C in the B4C-Al agglomerate particles was 40%, but 32% and 16% in the whole composite. The microstructure of composites was examined by scanning electron microscope (SEM), and its mechanical properties were studied. The results indicate that Al particulate-toughened sample has a slight plasticity with bulks of aluminum alloy in the composite. But meso-structure design has no effect on improvement on the plasticity and toughness of the sample B4C-Al/Al (16%)(3#), where the mass fraction of B4C in the whole composite is 16%. In the present study, the strengthening and deformation mechanism of the composites were also discussed.


2016 ◽  
Vol 879 ◽  
pp. 1778-1782
Author(s):  
Shu Hui Huang ◽  
Zhi Hui Li ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Xi Wu Li ◽  
...  

The evolution of microstructure and porous defects of a spray-formed 7000 Aluminum alloy is researched in this paper. The spray-formed alloy is treated by hot isostatic pressing (HIP), homogenization, hot extrusion, solution and aging treatment. Metallographic microscope, scanning electron microscope (SEM) and tensile test are used to research the microstructure and mechanical properties. The results show that, there are two kinds of porous defects in spray-formed alloy, which has gas and no gas. The porous defects of spray-formed ingot can be mostly eliminated by HIP and hot extrusion. After solution and aging treatment, the tensile strength and elongation reach 757MPa and 10.2%, respectively.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2012 ◽  
Vol 457-458 ◽  
pp. 270-273
Author(s):  
Yi You Tu ◽  
Guo Zhong Li

Effect of superheat and initial rolling temperature on the morphology and distribution of sulfide in non quenched and tempered free cutting steel 30MnVS has been studied by optical microscope and scanning electron microscope. Results show that proper superheat and initial rolling temperature can turn rod-shaped sulfide into massive or globular sulfide,to alleviate sulfide segregation and pro-eutectoid ferrite distribution along the boundary of pearlite clusters in 30MnVS , increase the intragranular ferrite content and optimize the structure of continuous casting slab.


2016 ◽  
Vol 850 ◽  
pp. 101-106 ◽  
Author(s):  
Shu Mei Li ◽  
Jian Jun Yang ◽  
Wei Dong Zhang ◽  
August Chang ◽  
Cai Xia Zhang ◽  
...  

Premature fracture of an axle under torsional load occurred after a tracked military tank had experienced field testing for only 80 kilometers. Visual metallographic examinations were performed with optical microscope (OM) and scanning electron microscope (SEM). The investigation demonstrates that the premature fracture is caused by metallurgical problems inside the axle where the primary and secondary cracks originate, propagate, and eventually result in final catastrophic rupture through torsional fatigue. The failure mechanism is summarized and improvement of the fatigue lifetime for the axle is recommended.


2022 ◽  
Vol 905 ◽  
pp. 30-37
Author(s):  
Shu Lan Zhang ◽  
Xiao Dan Zhang ◽  
Hai Feng Xu ◽  
Chang Wang

Effect of microstructure size and type on the hardness for the duplex steel were disclosed by using of optical microscope (OM), scanning electron microscope (SEM) and nanoindenter for the samples hot compressed under different temperature with reduction of 10%, 30%, 50% and 70%. OM and SEM were used to measure the average martensite lamellar width, space and indenter morphology. nanoindenter test characterized the microstructure hardness for the samples under different process. Experiment results show that martensite hardness for the sample hot compressed at 950°C has larger diversity than that of sample hot compressed at 1200°C. The martensite hardness fluctuation range for the sample compressed at 950°C is almost from about 7GPa to 12GPa, while, for the sample compressed at 1200°C, the fluctuation range is basically from about 9GPa to 12GPa. However, the average hardness for the samples hot compressed at 950°C is comparably smaller, which is related with lower quench temperature. The larger martensite hardness fluctuation is mainly related with induced ferrite formation and finer martensite lamellar width. For the ferrite phase, the hardness fluctuation range is lower.


2021 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Mihailo Mrdak ◽  
Darko Bajić ◽  
Darko Veljić ◽  
Marko Rakin

In this paper we will describe the process of the deposition of thick layers of VPS-Ti coating, which is used as a bonding layer for the upper porous Ti coatings on implant substrates. In order to deposit the powder, we used HÖGANÄS Ti powder labelled as AMPERIT 154.086 -63 µm. In order to test the mechanical properties and microstructure of the VPS-Ti coating, the powder was deposited on Č.4171 (X15Cr13 EN10027) steel substrates. Mechanical tests of the microhardness of the coating were performed by the Vickers hardness test method (HV0.3) and tensile strength by measuring the force per unit area (MPa). The microhardness of the coating is 159 HV0.3, which is consistent with the microstructure. The coating was found to have a good bond strength of 68 MPa. The morphology of the powder particles was examined on a scanning electron microscope. The microstructure of the coating, both when deposited and etched, was examined with an optical microscope and a scanning electron microscope. By etching the coating layers, it was found that the structure is homogeneous and that it consists of a mixture of low-temperature and high-temperature titanium phases (α-Ti + β-Ti). Our tests have shown that the deposited layers of Ti coating can be used as a bonding layer for porous Ti coatings in the production of implants.


Sign in / Sign up

Export Citation Format

Share Document