Electrospun MWCNTs/Poly(lactic-co-glycolic acid) Composite Nanofibrous Drug Delivery System

2012 ◽  
Vol 424-425 ◽  
pp. 1220-1223 ◽  
Author(s):  
Rui Ling Qi ◽  
Hui Juan Liu

In this study, nanotubular materials multi-walled carbon nanotubes (MWCNTs) were used to encapsulate a model drug, doxorubicine hydrochloride (DOX). Then, the drug-loaded nanotubes (DOX/CNTs) with an optimized drug encapsulation percentage were mixed with poly (lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The morphology was characterized using scanning electron microscopy (SEM). The proliferation of mouse fibroblast cells cultured on both PLGA and CNTs-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay of cell viability and SEM observation of cell morphology. In vitro drug release behavior was examined using UV-vis spectroscopy. We show that the incorporation of CNTs and DOX/CNTs within the nanofibrous mats does not significantly change the morphology of the mats. In addition, our results indicate that this double-container drug delivery system (both PLGA polymer and CNTs are drug carriers) is beneficial to avoid the burst release of the drug. The drug loaded elctrospinning composite nanofibrous mats developed in this study may find various applications in tissues engineering and pharmaceutical sciences.

2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jonathan Rios-Doria ◽  
Adam Carie ◽  
Tara Costich ◽  
Brian Burke ◽  
Habib Skaff ◽  
...  

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


2020 ◽  
Vol 6 (1) ◽  
pp. 45-49
Author(s):  
Sudipta Das ◽  
Baishali Ghosh ◽  
Surita Basu

The objective of the present study was formulation and evaluation of pulsatile release tablets of Atenolol. A tablet system consisting of cores which was coated with layers of swelling and rupturable coatings. Cores containing Atenolol as model drug were prepared by direct compression with appropriate ratios of lactose and microcrystalline cellulose and then coated sequentially with different ratios of an inner swelling layer containing HPMC and an outer rupturable layer of Ethyl Cellulose. The effect of level of swelling layer and rupturable coating was investigated. The different formulation press coated by using different weight ratios of Hydroxy Propyl Methyl Cellulose (HPMC) / Ethyl Cellulose (EC) / both HPMC and EC. The optimum result was achieved in formulation containing HPMC: EC weight ratios. The F3 batch achieved a highest burst release after the lag time which is applicable pulsatile drug delivery system of Atenolol.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 242 ◽  
Author(s):  
Miaomiao Luo ◽  
Wei Cheng ◽  
Xiaowei Zeng ◽  
Lin Mei ◽  
Gan Liu ◽  
...  

Due to the inherent limitations, single chemo or photothermal therapies (PTT) are always inefficient. The combination of chemotherapy and PTT for the treatment of cancers has attracted a great interest during the past few years. As a photothermal agent, black phosphorus quantum dots (BPQDs) possess an excellent extinction coefficient, high photothermal conversion efficacy, and good biocompatibility. Herein, we developed a photo- and pH-sensitive nanoparticle based on BPQDs for targeted chemo-photothermal therapy. Doxorubicin (DOX) was employed as a model drug. This nanosystem displayed outstanding photothermal performance both in vitro and in vivo. Folic acid conjugation onto the surface endowed this system an excellent tumor-targeting effect, which was demonstrated by the cellular targeting assay. The BPQDs-based drug delivery system exhibited pH- and photo-responsive release properties, which could reduce the potential damage to normal cells. The in vitro cell viability study showed a synergistic effect in suppressing cancer cell proliferation. Therefore, this BPQDs-based drug delivery system has substantial potential for future clinical applications.


Clay Minerals ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Faezeh Hosseini ◽  
Farzaneh Hosseini ◽  
Seyyed Mehdi Jafari ◽  
Azade Taheri

ABSTRACTLocal chemotherapy with biocompatible drug-delivery systems prolongs survival in patients. Due to the biocompatibility and high loading capacity, bentonite nanoclay is a good candidate for the fabrication of drug-delivery vehicles. In this study, doxorubicin-bentonite nanoclay complex (DOX-Bent complex) was prepared for the first time as a sustained-release drug-delivery system for intratumoural chemotherapy of melanoma. An efficient loading of DOX on 1 mg of bentonite nanoclay as high as 994.45 ± 4.9 µg was obtained at a 30:1 DOX:bentonite nanoclay mass ratio. The DOX-Bent complex showed a low initial burst release of DOX in the first 24 h of release, followed by a sustained-release pattern for 21 days. The cumulativein vitrorelease of DOX from the DOX-Bent complex at pHs 6.5 and 7.4 revealed that the DOX-Bent complex can distinguish between tumour and normal tissues and express specific drug release at the tumour site. The results of cytotoxicity experiments indicated that the release pattern of DOX can supply sufficient DOX to inhibit growth of the melanoma cancer cell with an IC50 of 0.29 ± 0.07 µg/mL. It is thus suggested that the DOX-Bent complex be introduced as a drug-delivery system for effective local cancer therapy.


RSC Advances ◽  
2014 ◽  
Vol 4 (36) ◽  
pp. 18683-18693 ◽  
Author(s):  
Giulia Risi ◽  
Nora Bloise ◽  
Daniele Merli ◽  
Antonia Icaro-Cornaglia ◽  
Antonella Profumo ◽  
...  

Mitoxantrone 600 dpi in TIF format)??>(MTO) is a well-known anticancer drug. In order to improve its therapeutic effect, multi-walled carbon nanotubes (MWCNTs) were studied in vitro as a drug delivery system.


2017 ◽  
Vol 53 (25) ◽  
pp. 3535-3538 ◽  
Author(s):  
Zhi-Heng Li ◽  
Zheng-Li Tan ◽  
Ai-Xiang Ding ◽  
Bing Gong ◽  
Zhong-Lin Lu ◽  
...  

A NO-response amphiphile was successfully formed into vesicles in aqueous solution, which could encapsulate and control the release of carboxyfluorescein (CF) as a model drug in vitro and in living cells.


Sign in / Sign up

Export Citation Format

Share Document