On the Basis of Forest Volume Expansion Method to Predict the Carbon Sink Potentiality in Daxing'anling

2012 ◽  
Vol 424-425 ◽  
pp. 128-131
Author(s):  
Ying Li Huang ◽  
Li Hong Cheng ◽  
Xiao Qiang Li

The carbon sink function of nurturing forest and artificial forest have special important status in ecological protection and economic construction.This article calculates carbon sink potentiality of nurturing forest and artificial forest in Daxing'anling combining afforestation area data since "Natural Forest Protection II",applying forest volume expansion method and combining carbon sequestration function of forest. The result shows that the carbon sink potentiality in Daxing'anling is considerable.If we can explore its potential carbon value ,it will be a new source of revenue which will be a new solution to resource, environment and economy crisis.

2004 ◽  
Vol 31 (5) ◽  
pp. 415 ◽  
Author(s):  
Richard J. Williams ◽  
Lindsay B. Hutley ◽  
Garry D. Cook ◽  
Jeremy Russell-Smith ◽  
Andrew Edwards ◽  
...  

Tropical savannas cover a quarter of the Australian landmass and the biome represents a significant potential carbon sink. However, these savannas are subject to frequent and extensive fire. Fire regimes are likely to affect the productivity and carbon sequestration potential of savannas, through effects on both biomass and carbon emissions. The carbon sequestration potential has been estimated for some savanna sites by quantifying carbon storage in biomass and soil pools, and the fluxes to these pools. Using different techniques, previous work in these savannas has indicated that net ecosystem productivity [NEP, net primary productivity (NPP) less heterotrophic respiration] was about –3 t C ha–1 y–1 (i.e. a carbon sink). However, the impacts of fire were not accounted for in these calculations. Estimates of NEP have been combined with remotely-sensed estimates of area burnt and associated emissions for an extensive area of mesic savanna in Arnhem Land, NT, Australia. Combining NEP estimates with precise fire data provides an estimate of net biome productivity (NBP), a production index that includes carbon loss through disturbance (fire), and is thus a more realistic indicator of sequestration rate from this biome. This preliminary analysis suggests that NBP is approximately –1 t C ha–1 y–1 (i.e. a carbon sink). A reduction in the annual area burnt is likely to increase the sink size. Uncertainties surrounding these estimates of NBP and the implications of these uncertainties for land management in these extensive landscapes are discussed.


2013 ◽  
Vol 10 (3) ◽  
pp. 1751-1773 ◽  
Author(s):  
D. R. Cameron ◽  
M. Van Oijen ◽  
C. Werner ◽  
K. Butterbach-Bahl ◽  
R. Grote ◽  
...  

Abstract. Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon sink was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest, whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.


2018 ◽  
Vol 8 (1) ◽  
pp. 30-36
Author(s):  
Роман Котельников ◽  
Roman Kotelnikov ◽  
Алескандр Мартынюк ◽  
Aleskandr Martynyuk

Timely availability of accurate burned out area data is a key management aspect in forest protection arrange-ments. Special operation multilevel net-work including field surveys of burned out areas has been established now to verify appropriate data accuracy. In the mean time extensive levels of information from various sources accumulated in wildfire databases enable statistical assessment of the data accuracy drastically reducing time and financial costs of verification operations. Mathematically proven that amount of numbers that specify real natural facilities may grow exponentially due to the Benford law. The paper proves applicability of the Benford law provisions in assessment of wildfire area data accuracy through analysis of first figure occurrence in numbers specifying forest covered burned out area in the Russian Federation territory in 2016 and assessed a minimum set of values needed for an adequate result. In addition the paper highlights an opportunity of variously outsourced data accuracy comparative analysis. Taking into consideration that variation of individual figure occurrence frequency in analyzed value packages may have a different sign for various figures it is offered to apply an indicator representing a mean value of appropriate figure occurrence probability variation modules. The offered procedure based on the Benford law application may be a part of a risk-targeted approach to plan control supervisory operations in forest relations.


Sign in / Sign up

Export Citation Format

Share Document