Application of Uniform Design in Experiments of WEDM in Gas

2012 ◽  
Vol 426 ◽  
pp. 11-14 ◽  
Author(s):  
Tong Wang ◽  
Shu Qiang Xie ◽  
Xiao Cun Xu ◽  
Q. Chen ◽  
X.C. Lü ◽  
...  

Comparing with conventional WEDM in emulsion, dry finishing of high-speed WEDM (HS-WEDM) has advantages such as higher material removal rate, better surface roughness and straightness. Authors have presented a new procedure as gas-liquid combined multiple cut, in which roughing is processed in dielectric liquid, and semi-finishing is in liquid or gas, while finishing is in gas. For better understanding the effect of machining parameters on surface roughness(Ra) and cutting speed (Vw) in dry finishing, a L25(56) Design test was implemented. The analysis of variance shows that offset and wire length are not significant on Ra and Vw. In this paper, the other four significant parameters, such as pulse duration, pulse interval ratio, peak current and no load worktable feed, were selected as factors in Uniform Design test. The final regression equations for Ra and Vw in terms of the actual parameter values were calculated out with MATLAB. Regression statistics of values R2 imply the two regression equtions fit well with test data and Model F-Values imply the two models are significant. Values t and α for regression equation coefficient tests of Ra and Vw show the major impacting items and interactions between them.

2010 ◽  
Vol 455 ◽  
pp. 190-193 ◽  
Author(s):  
Tong Wang ◽  
Feng Qiu ◽  
C.Q. Wang ◽  
G.Z. Zhang ◽  
Xiao Cun Xu

Comparing with conventional WEDM in emulsion, dry finishing of high-speed WEDM (HS-WEDM) has advantages such as higher material removal rate, better surface roughness and straightness. Authors have presented a new procedure as gas-liquid combined multiple cut, in which roughing is processed in dielectric liquid, and semi-finishing is in liquid or gas, while finishing is in gas. For better understanding the effect of machining parameters on surface roughness and cutting speed in dry finishing, a L25(56) Design was implemented. The analysis of variance shows that the effect of pulse duration on surface roughness is of high significance, and peak current is of significance respectively, and the effect of no load worktable feed on cutting speed is high significant.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2010 ◽  
Vol 447-448 ◽  
pp. 816-820 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Surface integrity is particularly important for the aerospace industry components in order to permit longer service life and maximized its reliability. This present work compares the performance of palm oil and synthetic ester on surface roughness, surface defect, microhardness and subsurface deformation when high speed drilling of Ti-6Al-4V under MQL condition. The drilling tests were conducted with AlTiN coated carbide tool. The surface roughness decreased with increasing in cutting speed and thicker subsurface deformation was formed underneath the machined surface. Grooves, cavities, pit holes, microcracks and material smearing were the dominant surface damages thus deteriorated the machined surface. For both lubricants, the machined surface experienced from thermal softening and work hardening effect thus gave a variation in microhardness values. The results indicated the substantial benefit of MQL by palm oil on surface integrity.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Manufacturing a defect free (quality) product is playing a vital role in today’s globally competitive, customer oriented era. Meeting the demand of the market by producing sufficient quantity is another challenge. Achieving greater production rates without compromising on quality, increases the complexity of the task. Adopting modern manufacturing methods like CNC turning are essential to meet the above requirements. EN19 is an important member in the family of alloy steels, which has a wide variety of applications in automobile and machine tool industries. Optimization of machining parameters is crucial in obtaining the required outputs such as quality and productivity. In this work, optimization of CNC turning parameters for machining EN19 alloy steel is performed. The number of experiments was designed using face centred central composite based response surface methodology with varied independent process parameters namely cutting speed, feed and depth of cut. After designing the experiments, the performance measures such as surface roughness of the test samples and Material Removal Rate (MRR) is calculated using the existing formulae. The influence of parameters on MRR and surface roughness are determined by analysis of variance (ANOVA) and for significance interactions of the process parameters are also considered. Using MINITAB 17 software analysis is performed. Further, regression analysis has been done and second order mathematical model is obtained. Using desirability approach, optimization is carried out.


Author(s):  
Feng Jiao ◽  
Ming-jun Zhang ◽  
Ying Niu

Laser heating assisted cutting is a lucrative technique for machining difficult-to-machine materials such as tungsten carbide (YG20), which uses a high power laser to focally heat a workpiece before the material removal with traditional or innovative cutting tool. In the latter case, the application of ultrasonic vibration to the cutting edge was found to replace the continuous cutting mode to the interrupted one, it reduces the adhesion and entanglement of chips, improves the tool wear and surface roughness of the workpiece. The combination of laser heating assisted cutting and two-dimensional ultrasonic vibration cutting methods has been successfully applied by the authors of this paper for cutting of tungsten carbide (YG20). In this follow-up study, the proposed composite method is experimentally and theoretically verified. Through the mathematical model and simulation analysis, its advantages, including small cutting force, softening the effect and improved machining properties of the processed material (YG20) are corroborated. The dependencies between the laser power, cutting speed, depth of cut, and feed rate on the surface roughness are established via the response surface methodology. The genetic algorithm is applied to the optimization of machining parameters by setting the material removal rate as the object variable and surface roughness as a constraint variable. The results obtained strongly suggest that the optimized parameters improve the processing efficiency and furnish the required processing quality.


2011 ◽  
Vol 189-193 ◽  
pp. 1376-1381
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou El Hossein

This paper presents the prediction of a statistically analyzed model for the surface roughness,R_a of end-milled Machinable glass ceramic (MGC). Response Surface Methodology (RSM) is used to construct the models based on 3-factorial Box-Behnken Design (BBD). It is found that cutting speed is the most significant factor contributing to the surface roughness value followed by the depth of cut and feed rate. The surface roughness value decreases for higher cutting speed along with lower feed and depth of cut. Additionally, the process optimization has also been done in terms of material removal rate (MRR) to the model’s response. Ideal combinations of machining parameters are then suggested for common goal to achieve lower surface roughness value and higher MRR.


2021 ◽  
Vol 22 (2) ◽  
pp. 283-293
Author(s):  
Savina Jaddinagadhe Puttaswamy ◽  
Raghavendra Bommanahalli Venkatagiriyappa

Nanocomposites were prepared with Al-6065-Si and multi walled carbon nanotubes of 1 wt.% as reinforcement through the stir-casting method. Fabricated nanocomposites were machined on a lathe machine using a tungsten carbide tool. The study investigated the multi-objective optimization of the turning operation. Cutting velocity, feed, and depth of cut were considered for providing minimum Surface Roughness of the workpiece. Also, the power consumed by the lathe machine with maximum metal removal rate was examined by surface response methodology. The design of experiments was developed based on rotational central composite design. Analysis of variance was executed to investigate the adequacy and the suitable fit of the developed mathematical models. Multiple regression models were used to represent the relationship between the input and the desired output variables. The analysis indicates that the feed is the most influential factor that effects the surface roughness of the workpiece. Cutting speed and the depth of cut are two other important factors that proportionally influence the power consumed by the lathe tool as compared to the feed rate. ABSTRAK: Komposit nano disediakan bersama Al-6065-Si dan karbon nanotiub berbilang dinding sebanyak 1 wt.% sebagai bahan penguat melalui kaedah kacauan-tuangan. Komposit nano yang terhasil melalui mesin pelarik ini menggunakan alat tungsten karbida. Kajian ini merupakan pengoptimuman pelbagai objektif operasi pusingan. Kelajuan potongan, suapan dan kedalaman potongan diambil kira sebagai pemberian minimum pada kekasaran permukaan bahan kerja. Tenaga yang digunakan bagi mesin pelarik dengan kadar maksimum penyingkiran logam diteliti melalui kaedah tindak balas permukaan. Rekaan eksperimen yang dibangunkan ini adalah berdasarkan rekaan komposit pusingan tengah. Analisis varian telah dijalankan bagi mengkaji kecukupan dan penyesuaian lengkap bagi model matematik yang dibangunkan. Model regresi berganda digunakan bagi menunjukkan hubungan antara input dan pembolehubah output yang dikehendaki. Analisis menunjukkan pemberian suapan merupakan faktor mempengaruhi keberkesanan kekasaran permukaan bahan kerja. Kelajuan pemotongan dan kedalaman potongan adalah dua faktor penting lain yang mempengaruhi kadar langsung ke atas tenaga yang digunakan oleh mesin pelarik dibandingkan kadar pemberian suapan.


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2012 ◽  
Vol 723 ◽  
pp. 35-40 ◽  
Author(s):  
Han Lian Liu ◽  
Qing Ge Zhang ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Hong Tao Zhu

Based on the characteristics of austenitic stainless steel 1Cr18Ni9Ti, aiming to decrease surface roughness and milling force orthogonal face milling experiment with four factors and four levels was designed to optimize machining parameters with consideration of material removal rate. Three relatively excellent machining parameters were taken to further figure out the influences of cutting speed on tool life, and the tool wear mechanism was also analyzed. The results indicated that both surface roughness and milling force were greatly influenced by cutting speed and feed. The best machining parameters obtained in the experiments were v: 200m/min, fz: 0.1mm/z, ap: 0.9mm, ae: 35mm. The main tool failure mode under this circumstance was tool chipping at the flank between main cutting edge and surface to be processed, besides, the wear of rake face was relatively slight.


Sign in / Sign up

Export Citation Format

Share Document