The Influence of High-Speed Cutting Technics Parameter No Materials Removal in Turning High Alloy Antifriction Cast Iron

2012 ◽  
Vol 426 ◽  
pp. 168-171
Author(s):  
L.J. Ma ◽  
Y. D. Gong

Though the high-speed cutting experimentation of high alloy antifriction cast iron, the materials performance and request on tools in cutting were analyzed. Though single-factor experimentation, the factors of affecting on cutting efficiency were discussed, such as tools materals, cutting speed, feed speed and cutting depth. The results show that the durability of PCBN tools is higher, but the durability of ceramics and tungsten-cobalt carbide tipped tools is low. The influence curve of cutting speed to machining efficiency is a part of parabola. And the influence curve of cutting depth to machining efficiency can be divided two parts of materials removal and tools wear. In the ensuring of technical requirements of work-piece machining. The high cutting efficiency can be obtained, when cutting speed vc=75~100m/min, feed speed f≤8mm and cutting depth ap =0.1~0.3mm.

2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2014 ◽  
Vol 800-801 ◽  
pp. 571-575
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

Under the condition of cutting speed 10-300m/min, rake angle -10°、0°、10°and cutting depths 0.05mm、0.1mm and 0.2mm, the experiment study of adiabatic shear serrated chip and surface roughness are carried out. The influence of cutting condition on serrated chip is analyzed through the metallographic observation of obtained chip. By the measurement of finished surface, the influenc of cutting condition and adiabatic shear on surface roughness is also investigated. The rusults show that the reason lead to serrated chip in high speed cutting of Ti6Al4V is adiabatic shear, not the periodic fracture.The adiabatic shear serrated chip is easier appear and the degree of segment is more large under the condition of higher cutting speed, larger cutting depth and smaller rake angle. The surface roughness is smaller when the cutting speed is higher, cutting depth is larger, and rake angle is smaller.


2011 ◽  
Vol 188 ◽  
pp. 216-219 ◽  
Author(s):  
M.H. Wang ◽  
Zhong Hai Liu ◽  
Hu Jun Wang

In order to improve machined surface quality and reduce the deformation, the residual stress involved in cutting titanium alloy was studied under different cutting speed and cutting depth by finite element simulation method. The results indicate that the increase of cutting speed and cutting depth are helpful to the surface residual compressive stress generating. However the increase of cutting speed also leads to the increase of surface residual tensile stress, the effect degree is relatively small. It is required to select higher cutting speed and smaller cutting depth to improve the surface stress state and reduce the unexpected distortion.


2010 ◽  
Vol 126-128 ◽  
pp. 755-759 ◽  
Author(s):  
Ming Chen ◽  
Xiao Hui Zhang ◽  
Bing Han ◽  
Bin Rong ◽  
Gang Liu

The engineblock and cylinderhead of automobile are usually made of cast iron, and tapping of blind holes is one of the most demanding operations. As usual, tapping is the final process for an engineblock, and the failure of taps can disable the engineblock possibly. The productivity is restricted because of the low cutting speed and poor wear resistance of high speed steel (HSS) taps. Thereby, according to the demand on high speed cutting and low tact time of modern engine production lines, several new typical special tungsten carbide taps are developed and their cutting performance are evaluated in comparison with the commercial taps. In the process of tapping blind holes in gray cast iron and ductile cast iron, several aspects are studied comparatively such as wear mechanism of the first complete and the last incomplete tooth, tap structure, wear of TiCN coating and effects of coolant on cutting performance of taps. This study indicates that straight coated taps with fewer flutes are suitable for high speed tapping of cast iron.


2012 ◽  
Vol 500 ◽  
pp. 32-37
Author(s):  
K.P. Zhang ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

7CrSiMnMoV (HRC65) hardened steel mold was cutted to investigate the effects of cutting parameters (cutting speed, feed speed, radial cutting depth, axial cutting depth) on cutting force and cutting temperature. Cutting was done with the ball-mill tool coating with TiAlN and without coolant with a high-speed. The aim of this study is putting forward the principle of reasonable choice of cutting parameters and optimizing cutting parameters.


2010 ◽  
Vol 37-38 ◽  
pp. 432-434
Author(s):  
Lian Jie Ma ◽  
Zhen Tang Zhou

In cutting experiment, high alloy antifriction cast irons were selected. Through high-speed cutting experimentation, the materials’ performance and requirement for tools were analyzed. The feasible cutting capacity and tool parameters were ascertained. The cutting defect and solving method were discussed. The results indicate that there are high hardness, high wear resistance and brittleness of high alloy antifriction cast irons. In ensuring the technical requirements of work-piece machining, PCBN is a better tool material. When the tool orthogonal rake angle =-6°, the tool’s durability is higher and machining quality is better. High cutting efficiency can be obtained, when cutting speed vc is from 75 to 100 m/min, the feedrate f is less than 8 mm/min, and the cutting depth ap is from 0.1 to 0.3 mm. These cutting dosages are appropriate in machining high alloy antifriction cast irons.


2012 ◽  
Vol 723 ◽  
pp. 99-104
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

In this paper, some high speed cutting experiments of hardened 45 steel are carried out. The effects of cutting parameters on the width and space of adiabatic shear band, the frequency and degree of sawtooth are investigated by metallographic observation and theoretical calculation. The results show that the space of adiabatic shear band decreases with the increase of cutting speed and rake angle, but increases with the increase of cutting depth. The width of adiabatic shear band decreases with the increase of cutting speed and cutting depth, however, increases with the increase of rake angle. The frequency of sawtooth increases with the increases of cutting speed, decreases with the increase of rake angle, and has no obvious relationship with cutting depth. The degree of sawtooth increases with the increase of cutting speed and cutting depth, but decreases with the increase of rake angle.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


Sign in / Sign up

Export Citation Format

Share Document